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Abstract Single-reference coupled-cluster (CC) methods

for electronic excitation are based on a biorthogonal rep-

resentation (bCC) of the (shifted) Hamiltonian in terms of

excited CC states, also referred to as correlated excited

(CE) states, and an associated set of states biorthogonal to

the CE states, the latter being essentially configuration

interaction (CI) configurations. The bCC representation

generates a non-hermitian secular matrix, the eigenvalues

representing excitation energies, while the corresponding

spectral intensities are to be derived from both the left and

right eigenvectors. Using the perspective of the bCC rep-

resentation, a systematic and comprehensive analysis of the

excited-state CC methods is given, extending and gener-

alizing previous such studies. Here, the essential topics are

the truncation error characteristics and the separability

properties, the latter being crucial for designing size-con-

sistent approximation schemes. Based on the general order

relations for the bCC secular matrix and the (left and right)

eigenvector matrices, formulas for the perturbation-theo-

retical order of the truncation errors (TEO) are derived for

energies, transition moments, and property matrix elements

of arbitrary excitation classes and truncation levels. In the

analysis of the separability properties of the transition

moments, the decisive role of the so-called dual ground

state is revealed. Due to the use of CE states, the bCC

approach can be compared to so-called intermediate state

representation (ISR) methods based exclusively on suitably

orthonormalized CE states. As the present analysis shows,

the bCC approach has decisive advantages over the con-

ventional CI treatment, but also distinctly weaker TEO and

separability properties in comparison to a full (and her-

mitian) ISR method.

Keywords Electronic excitation � Coupled-cluster

methods � Intermediate state representations

1 Introduction

The extension of the coupled-cluster (CC) approach [1–3],

originally devised for ground states, to the treatment of

electronic excitation has afforded the emergence of a

variety of highly successful computational methods,

excelling at the potential for both numerical efficiency and

accuracy. The excited-state CC methodology comprises

three major developments referred to as the coupled-cluster

linear response (CCLR) theory [4–8], the equation-of-

motion coupled-cluster (EOM-CC) approach [9–14] and

the symmetry-adapted cluster configuration interaction

(SAC-CI) [15–17]. While these developments vary in the

derivation of the CC equations, the resulting computational

schemes are largely equivalent. A notable difference,

however, is the treatment of transition moments and exci-

ted-state properties, where, in contrast to the CC-EOM and

SAC-CI schemes, the CCLR theory leads to size-consistent

expressions.

The basic feature of the CC methods is the use of so-

called correlated excited (CE) states as basis states in the

expansion of the exact excited states. These CE states are

obtained by applying physical excitation operators associ-

ated with single (S), double (D), triple (T), ... electron
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excitations to the exact (correlated) CC ground state,

jW0
Ji ¼ ĈJ jWcc

0 i; rather than to the Hartree–Fock (HF)

ground state, jUJi ¼ ĈJ jU0i; establishing in the latter case

the familiar configuration interaction (CI) basis states or CI

configurations. Obviously, the CE states represent inter-

mediates of sorts, positioned between the simple CI con-

figurations and the exact final states. Accordingly, methods

based on the use of CE states have been referred to as

intermediate state representations (ISR) [18], and the

excited-state CC approach is closely related to the family

of ISR methods. However, the CE states are not ortho-

normal, and this problem is dealt with by introducing, in

addition to the CE states, the associated set of biorthogonal

states. Using the biorthogonal states on the left side and the

CE states on the right-hand side, one obtains a mixed

(biorthogonal) representation of the (shifted) Hamiltonian,

giving rise to a non-hermitian secular matrix. The two sets

of states differ distinctly in their intrinsic quality. In fact,

the biorthogonal states can be identified essentially as CI

configurations. This means that the biorthogonal CC (bCC)

representation represents a hybrid approach, combining the

CI and ISR concepts in equal measure.

What are the merits of an ISR approach as compared to

the conceptually so much simpler CI treatment? The

answer is that the ISR methods are not (or much less)

affected by two basic deficiencies of the CI approximation

schemes, namely the lack of size consistency and the need

for relatively large explicit configuration spaces. The size-

consistency error inherent to limited CI treatments [as

opposed to full (F) CI expansions] stems from the non-

separable structure of the CI secular equations. More

precisely, for a system composed of non-interacting frag-

ments, there is no a priori decoupling of the CI secular

matrix into corresponding fragment blocks. The inevitable

and, moreover, uncontrollable size-consistency error asso-

ciated with truncated CI expansions grows with the system

size, rendering the results for extended systems useless.

This is why CI cannot rank as a genuine many-body

method. Second, large CI expansions (configuration

spaces) are needed to suppress the quite unfavorable

truncation error, that is, the error due to discarding higher

excitation classes in the CI expansions. For example, a CI

expansion extending through single and double excitations

(CISD) induces a truncation error of second order of per-

turbation theory (PT) in the excitation energies of singly

excited states. In the CC methods, by contrast, the corre-

sponding (SD) truncation error is of third order. Even more

advantageous is the situation in full (hermitian) ISR

methods, where the SD truncation error is already of the

fourth order.

The purpose of this paper is to review the separability

properties and truncation error characteristics of the exci-

ted-state CC schemes, aiming here at a more systematic

and more comprehensive analysis than available so far.

Previous studies of this kind have been presented by

Jørgensen and co-workers within the context of the CCLR

theory, addressing the size consistency of the CC excitation

energies [8] and transition moments [19], and analyzing the

truncation errors in the CC excitation energies [20, 21].

Studies devoted to the size consistency of the excited-state

CC equations have also been presented by Mukhopadhyay

et al. [22] and Stanton [23]. From a different perspective,

the so-called order relations of the bCC secular matrix and

the ensuing truncation errors in the CC excitation energies

have been discussed by the present authors [18] and by

Trofimov et al. [24]. However, the latter studies, devised

essentially to enable comparison to the algebraic-

diagrammatic construction (ADC) propagator methods

[24–26], were somewhat limited and suffered, moreover,

from certain misconceptions concerning the CC transition

moments.

The analysis given in this paper of the excited-states CC

approach will be formulated entirely within the framework

of the bCC concept, that is, a non-hermitian secular prob-

lem associated with a dual representation of the (shifted)

Hamiltonian in terms of two biorthogonal sets of basis

states. While in the EOM-CC development, the bCC rep-

resentation is introduced more or less in an ad hoc manner,

depicting the bCC secular matrix essentially as a CI-type

representation of an effective (similarity transformed)

Hamiltonian, the CCLR approach is based on response

theory for time-dependent CC ground-state expectation

values. Clearly, the CCLR derivation is highly original and

instructive, and, in fact, transcends the simple bCC for-

mulation in the case of the transition moments and various

reponse properties. However, the essence of the emerging

computational scheme can much easier be presented and

understood using the bCC concept. Thus, it should be

permissible and even advisable to abandon the original

notations associated with linear response theory and rather

resort to a stringent wave function formulation adapted to

the bCC concept. Not only will this make the excited-state

CC methods more amenable to readers not familiar with

the rather demanding time-dependent CC response theory,

it will also allow us to embed the CC approach quite nat-

urally in the broader context of ISR methods.

An outline of the paper is as follows. In Sect. 2, we

briefly review the CI method with regard to the truncation

error and separability properties. Section 3 presents the

basics of the CC approach to electronic excitation. This is

followed in Sect. 4 by an analysis of the properties of the

bCC representation and the resulting excitation energies,

transition moments and excited-state properties. Section 5

contrasts the bCC representation with a full (hermitian)

ISR approach. A summary and some conclusions are given

in the final Sect. 6. Some important supporting material is
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presented in a tripartite Appendix. In Appendix 1 the proof

of the bCC order relations is reviewed. In Appendix 2, we

derive the order relations of both CI and bCC eigenvector

matrices, which, in turn, allows us to generate general

truncation error formulas. The CCLR forms of the right

transition moments and excited-state properties are

reviewed in Appendix 3.

2 A look at the CI method

The justification of the intrinsically more complicated

intermediate state representations derives from basic

shortcomings of the standard configuration-interaction (CI)

approach with regard to the truncation error of the CI

expansions and the size consistency of the results. To

provide for a general background, we begin with a brief

recapitulation of the CI problems.

For the electronically excited states jWni of an atom or

molecule, the Schrödinger equation may be written in the

form

ðĤ � E0Þ Wnj i ¼ xn Wnj i ð1Þ

where Ĥ is the Hamiltonian of the system under

consideration, and E0 and xn = En - E0 denote the

ground-state energy and excitation energy, respectively.

In the CI treatment, being the standard quantum chemical

method, the excited states are expanded according to

Wnj i ¼
X

J

XJn UJj i ð2Þ

as a linear combination of CI states

UJ ¼ ĈJ

� ��U0

�� �
ð3Þ

generated by applying ‘‘physical’’ excitation operators ĈJ

to the HF ground state, U0j i: Using the notation of second

quantization, the excitation operator manifold may be

expressed as follows:

ĈJ

� �
� cyack; cyacybckcl; a\b; k\l; . . .
n o

ð4Þ

Here cypðcpÞ denote creation (annihilition) operators asso-

ciated with the HF orbitals j/pi: Following a widely

adopted convention, the subscripts a, b, c, ... and i, j, k, ...

denote unoccupied (virtual) and occupied orbitals, respec-

tively, while the indices p, q, r, ... will be used in the

general case. The capital indices I, J, ... are used as an

abbreviation for strings of one-particle indices, e.g., I : (a

b k l).

The excitation operators in (4) can be divided into

classes of p–h (single), 2p–2h (double), ... excitations. For

brevity, these classes will be numbered consecutively, that

is, the class of lp–lh excitations is referred to as class l.

The class of a particular excitation J will be denoted by [J].

For example, [J] = 2 means J is a double excitation. The

HF ground state U0j i; being part of the CI expansions (2),

constitutes a zeroth class (l = 0).

The excitation energies and expansion coefficients are

obtained as the eigenvalues and eigenvector components,

respectively, of the CI eigenvalue problem, reading in a

compact matrix notation

HX ¼ XX; XyX ¼ 1 ð5Þ

Here H is the (subtracted) CI secular matrix,

HIJ ¼ UI Ĥ � E0

�� ��UJ

� �
ð6Þ

X denotes the diagonal matrix of excitation energies xn,

and X is the matrix of (column) eigenvectors Xn: Note that

the subtraction of the ground-state energy E0 in the diag-

onal of the CI secular matrix is a mere convention here,

introduced for formal analogy to the bCC representation

considered in Sect. 3.

Approximate CI treatments are obtained by limited CI

expansions as opposed to full (FCI) expansions. In the

following, we will be concerned with systematic trunca-

tions of the CI expansions, that is, expansions being

complete through a given excitation class l. These sys-

tematic truncation schemes can be examined with respect

to the perturbation-theoretical (PT) order of the induced

error in the CI results. For this purpose, one has to inspect

the ‘‘order structure’’ of the CI secular matrix (Fig. 1), that

is, a PT classification of the sub-blocks Hlm associated with

a partitioning of H with respect to the excitation classes.

Figure 1 shows the characteristic CI structure, where each

excitation class is coupled linearly in the Coulomb
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Fig. 1 a Order structure of the CI secular matrix H. The sub-blocks

correspond to the partitioning with respect to excitation classes

of lp–lh (l-particle–l-hole) excitations, l = 1, 2, .... The entries 0,

1 indicate the ‘‘PT order’’ of the blocks, being here simply 0 (in the

diagonal blocks) or 1 (linear in the electron repulsion integrals);

vanishing blocks are indicated by dashes. b Order relations of CI

eigenvectors associated with singly excited states (Xph) and the

ground state (X0). The entries denote the (lowest) PT order of the

respective eigenvector segments
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integrals (first order) to the next and next but one excitation

class. Owing to the (zeroth order) orbital energy contri-

butions of the diagonal matrix elements, the diagonal

blocks are indicated by zeros.

The order structure of the CI secular matrix gives rise to

characteristic truncation errors in the excitation energies.

As the most important case, let us consider singly excited

states, that is, states deriving perturbation-theoretically

from p–h configurations (CI basis states). Due to the linear

(first-order) coupling to triple (3p–3h) excitations (see

Fig. 1), there is a second-order energy contribution to the

single excitation energies arising from the admixture of

triple excitations. This means that a second-order trunca-

tion error arises in the single-excitation energies if the

triple excitations are not taken into account. A stringent

derivation of the general CI truncation errors is given in

Appendix 2 (CI eigenvector matrix). Specifically, the

truncation error orders (TEO) for single excitation energies

are given by the following formula:

OTEðlÞ ¼
l; l even

lþ 1; l odd

�
ð7Þ

Here l denotes the highest excitation class included in the

CI expansion manifold. In Table 1 the resulting TEOs for

l ¼ 1; . . .; 6 are listed.

Besides the energies, the transition moments

Tn ¼ Wnh jD̂ W0j i ð8Þ

are of interest, being required to compute spectral

intensities. Here D̂ denotes a (one-particle) transition

operator, e.g., a dipole operator component. To evaluate

the truncation error of the transition moments, one has to

analyze the CI expression

Tn ¼ XynDX0 ð9Þ

with respect to the order relations of the CI eigenvectors Xn

and X0; respectively, and the CI representation of D̂;

DIJ ¼ UI D̂
�� ��UJ

� �
: ð10Þ

The order relations of the CI eigenvectors for singly excited

states and for the ground state, shown in Fig. 1, are part of

the general order structure of the CI eigenvector matrix X,

derived in Appendix 2 (CI eigenvector matrix). Together

with the trivial order structure of D (zeroth-order diagonal

and off-diagonal blocks, other matrix elements vanishing),

one can deduce the following simple TEO expression for

the transition moments of singly excited states:

OTEðlÞ ¼ l ð11Þ

For odd values of l, the TEOs of the transition moments

are smaller by 1 as compared to the excitation energies.

The CI truncation errors are relatively large, which, in

turn, implies that large CI expansions are required to meet

specific accuracy levels. For example, in order to treat

singly excited states consistently through second order of

PT, the CI configuration space must comprise the triple

excitations (l = 3). By contrast, in the ISR methods, a

much smaller explicit configuration space, consisting of

single and double excitations, affords the corresponding

level of accuracy.

To analyze the size-consistency properties of a method,

one usually resorts to the separate fragment model, that is,

a system S consisting of two strictly non-interacting frag-

ments, A and B. A method for treating electronic excitation

is size consistent (here, more specifically, size intensive) if

for local excitations, say on fragment A, the computed

excitation energies and transition moments do not depend

on whether the method is applied to the fragment or to the

composite system. It is well known that truncated CI

treatments do not fulfill this property. There is an uncon-

trollable size-consistency error in the treatment of the total

system, corrupting not only the results for the separate

fragment model, but, more generally, any truncated CI

treatment of larger molecules. This can be nicely demon-

strated in the exactly solvable model of a chain of non-

interacting two-electron two-orbital (2E–2O) systems, such

as 1s22s0 He atoms or minimal basis H2 molecules (see, for

example, Meunier and Levy [27]). Because of this defi-

ciency, the CI method does not qualify as a genuine many-

body method.

As a preparation for the analysis of the bCC schemes, let

us briefly inspect the case of CI in some more detail.

Obviously, the Hamiltonian for S decomposes into the sum

of the fragment Hamiltonians, Ĥ ¼ ĤA þ ĤB: Moreover,

the one-particle states (HF orbitals) of S can be classified as

belonging either to fragment A or B (local on A or B,

respectively). Accordingly, the CI states can be partitioned

into three different sets, that is, local excitations IA on

fragment A, local excitations IB on fragment B, and mixed

(or non-local) excitations IAB involving both fragment A

Table 1 Truncation errors (PT order) for excitation energies, tran-

sition moments and excited-state properties of singly excited states

Truncation level Excitation

energies

Transition

moments

Properties

CI bCC ADC CI bCC ADC CI bCC ADC

1 2 2 2 1 1 2 1 1 1

2 2 3 4 2 3 4 2 2 3

3 4 5 6 3 4 6 3 4 5

4 4 6 8 4 6 8 4 5 7

5 6 8 10 5 7 10 5 7 9

6 6 9 12 6 9 12 6 8 11

Comparison of CI, bCC and ADC approaches at the lowest six

truncation levels
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and B. In the latter class, we may disregard any excitations

that do not conserve the local electron number, e.g., A?B-

charge-transfer excitations. In the non-interacting fragment

model, such charge transfer excitations are strictly decou-

pled from the fragment-charge conserving excitations,

which are of interest here.

The CI configurations jUIi can be written as products of

fragment states, e.g.,

jU0i ¼ jUA
0 ijUB

0 i
jUIA
i ¼ jUA

IA
ijUB

0 i
jUIAIB

i ¼ jUA
IA
ijUB

IB
i

ð12Þ

It should be noted that the neglect of full antisymmetrization

of these product states is irrelevant, because in the non-

interacting fragment model, matrix elements are not affected

by inter-fragment antisymmetrization. Figure 2 shows the

partitioning of the CI secular matrix with respect to the three

different types of configurations, that is, local excitations on

fragment A, local excitations on fragment B and non-local

excitations, respectively. While the A and B states are strictly

decoupled, HAB = 0, there is a coupling between the local

and mixed excitations, e.g.,

HIA;JAJB
¼ dIAJA

hUB
0 jĤBjUB

JB
i ð13Þ

as can easily be derived using the CI state factorization

according to Eq. 12. An explicit example is the coupling

matrix element

Hak;bc0d0i0j0l ¼ dabdklVc0d0 ½i0j0 � ð14Þ

for a single excitation IA = (ak) associated with fragment A

and a non-local triple excitation JAB = (bl,c0d0i0j0). Here, the

unprimed (primed) indices denote fragment A (fragment B)

one-particle states; Vpq[rs] denotes the anti-symmetrized

Coulomb integral.

Given the structure as shown in Fig. 2, the CI secular

matrix is said to be non-separable because there is no

a priori decoupling of local excitations (say on fragment A)

from non-local (or mixed) excitations. The CI treatment of

the composite system S aims in an inextricable way at an

optimal description of both fragments, that is, the excited

state of fragment A and the ground state of fragment B. In

the exact (full) CI result, say for the energy En = En
A ? E0

B

of the locally excited system, the ground-state energy E0
B

of the unaffected fragment B would cancel exactly upon

subtraction of the exact ground-state energy E0 = En
A ?

E0
B of S, so that, of course, the full CI excitation energy,

En - E0 = En
A - E0

A, is size consistent. At the level of a

limited CI expansion, however, neither the excited-state

energy nor the ground-state energy are simply the sums of

the fragment energies.

3 Biorthogonal CC representation

The bCC formulation (see, for example, Helgaker et al.

[28]) is based on a mixed representation of the (subtracted)

Hamiltonian, Ĥ � E0; in terms of two sets of left and right

expansion manifolds: (1) the CC states

W0
J

�� �
¼ ĈJ Wcc

0

�� �
¼ ĈJeT̂ U0j i ð15Þ

on the right-hand side, and (2) the associated biorthogonal

states

UI

� �� ¼ U0h jĈyI e�T̂ ð16Þ

on the left-hand side. Here ĈI denotes the physical

excitation operator as specified in Eq. 4. The familiar

ground-state CC parametrization (and normalization)

Wcc
0

�� �
¼ eT̂ U0j i ð17Þ

is used, where U0j i denotes the HF ground state, and

T̂ ¼
X

I

tIĈI ð18Þ

is the cluster operator with the amplitudes tJ determined by

the ground-state CC equations. The T̂ operator, comprising

physical excitation operators only, commutes with any

(physical) ĈJ operator, so that the CC states of Eq. 15 can

likewise be written as

W0
J

�� �
¼ eT̂ ĈJ U0j i ð19Þ

The biorthonormality of the two sets of states,

UI jW0
J

� �
¼ UIh je�T̂ eT̂ UJj i ¼ dIJ ð20Þ

is an obvious consequence of the orthonormalization of the

CI configurations UJj i ¼ ĈJ U0j i:

AX
A,ABH

AB,ABH

BBH

AAH

B,ABH

AB,BH

B

B

A

AB

AB

A

(A)

X
(b)(a)

XAB

A

AB,AH

Fig. 2 a Block structure of the CI secular matrix H corresponding to

the partitioning associated with the separate fragment model (see

text). b Structure of CI eigenvectors for a local excitation (on

fragment A)
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The bCC representation of Ĥ � E0 gives rise to a non-

hermitian secular matrix M with the elements

MIJ ¼ UI

� ��Ĥ � E0 W0
J

�� �

¼ U0h jĈyI e�T̂ ½Ĥ; ĈJ �eT̂ U0j i
ð21Þ

In the latter form, the (CC) ground-state energy E0 no

longer appears explicitly. Let us note that the bCC secular

matrix can also be written as a CI representation

MIJ ¼ hUI jH � E0jUJi

of the similarity transformed Hamiltonian, H ¼ e�T̂ ĤeT̂ :

However, this form is less transparent than the bCC

representation (21) and, thus, less useful for the analysis

intended here.

The (vertical) electronic excitation energies, xn = En -

E0, can be identified as the eigenvalues of the CC secular

matrix M. Because M is not hermitian, one has to deal with

right and left eigenvalue problems,

MX ¼ XX ð22Þ

YyM ¼ XYy ð23Þ

where X is the diagonal matrix of eigenvalues xn, and X

and Y denote the matrices of the right and left eigenvectors,

respectively. To obtain a definite normalization, the two sets

of secular equations have to be combined according to

YyMX ¼ X; YyX ¼ 1 ð24Þ

so that the resulting right and left eigenvectors form two

mutually biorthonormal sets. As a consequence, the

corresponding right and left excited states,

Wcc
n

�� �
¼
X

I

XIn W0
I

�� �
ð25Þ

WðlÞm

D �� ¼
X

I

Y�Im UI

� �� ð26Þ

are biorthonormal too, hWðlÞm jWcc
n i ¼ dmn:

In general, the right excited states Wcc
n

�� �
are not yet

eigenstates of Ĥ; because the underlying W0
I

�� �
expansion

manifold of Eq. 15 is incomplete as long as the CC ground

state Wcc
0

�� �
is not taken into account. Using the extended

CC expansion manifold fRg ¼ f Wcc
0

�� �
; W0

I

�� �
g on the right-

hand side, and, likewise, the extended biorthogonal mani-

fold fLg ¼ f U0h j; UI

� ��g on the left side, one arrives at the

full bCC representation of Ĥ � E0 associated with the

extended secular matrix

M0 ¼ 0 vt

0 M

� �
ð27Þ

Here vt is a transposed (row) vector with the elements

vI ¼ hU0jĤjW0
I i ð28Þ

that is, the coupling matrix elements between the HF

ground state and the excited CC states. Let us note that in

the usage of the EOM-CC approach, M0 is denoted by H. In

the CCLR context, on the other hand, the (inner) bCC

secular matrix M (Eq. 21) is referred to as the CC Jacobian

A and the coupling vector vt is denoted by g:

The two expansion manifolds used in the bCC repre-

sentation are of quite different quality. The ‘‘correlated

excited states’’ (CES) of the set {R} are superior to the

biorthogonal {L} states, if more complex. Obviously, a CC

state of class [I] can be written according to

W0
I

�� �
¼ eT̂ UIj i ¼ UIj i þ

X

K;½K�[ ½I�
z
ðIÞ
K UKj i ð29Þ

as a linear combination of UIj i and CI configurations of

higher excitation classes, [K] [ [I], extending through N-

tuple excitations. By contrast, the CI expansion of a

biorthogonal {L} set state reads

UI

� �� ¼ UIh je�T̂ ¼ UIh j þ
X

K;½K�\½I�
z
ðIÞ
K UKh j ð30Þ

that is, a linear combination of UIh j and lower class CI

excitations, [K] \ [I], including the zeroth class, [K] = 0.

This follows from the observation that z
ðIÞ
K ¼ UIh je�T̂ UKj i

vanishes for [K] [ [I] (and zK
(I) = dIK for [K] = [I]).

As is easily seen, the linear space spanned by the bior-

thogonal states through a given excitation class l is iden-

tical with the corresponding space of CI configurations:

spanf UIh je�T̂ ; ½I� ¼ 0; 1; . . .; lg
¼ spanf UIh j; ½I� ¼ 0; 1; . . .; lg ð31Þ

This means that (truncated) expansions in terms of the

biorthogonal ({L} set) states are essentially of the CI type.

Let us note that the SAC-CI equations are obtained by

using the CI expansion manifold for the left eigenstates

rather than the {L} states [15–17].

As will be discussed below, the use of a CI-type expan-

sion manifold on the left-hand side of the bCC representa-

tion deteriorates the overall order relations and separability

properties to a certain extent. One may wonder then why one

could not simply use the CC states as the common expansion

manifold for both sides of the secular matrix. However, in

such an approach, referred to as variational or unitary

CC version (see Kutzelnigg [29] and Szalay et al. [30]),

there is a major problem associated with evaluating the

secular (and overlap) matrix elements: being of the form

UIh jeT̂yĤeT̂ UJj i; there is no obvious truncation of higher

excitation contributions (below N-tuple excitation level).

Let us now briefly inspect the eigenpair manifold of the

extended bCC secular matrix M0. Obviously, there is one

more eigenvalue, x0 = 0, corresponding to the ground

state, while the excited-state eigenvalues, xn, n [ 0, of the

sub-block M are also eigenvalues of M0. The correspond-

ing extended left and right eigenvectors can easily be
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determined. Let us first consider the ground-state solutions.

Here the right eigenvector is trivial,

X0 ¼
1

0

� �
ð32Þ

which is consistent with the fact that Wcc
0

�� �
is the exact

ground state. Less obvious is the left ground-state

eigenvector

Y
0y
0 ¼ 1; Y

y
0

	 

ð33Þ

where the row vector Yy0 can explicitly be obtained from M

and v according to

Yy0 ¼ �vtM�1 ð34Þ

The corresponding representation of the ground state,

hW0j ¼ U0h j þ
X

I

Y�I0 UI

� �� ð35Þ

in terms of the biorthogonal bCC states is referred to as the

‘‘dual’’ ground state [7]. In the CCLR nomenclature, the

dual ground state is denoted by hKj: As will be discussed

below, the dual ground state is a non-separable CI-type

representation of the ground state, leading to undesired

features in the bCC transition moments.

The left excited-state eigenvectors of M0 are obtained as

obvious extensions according to

Y 0yn ¼ ð0; YynÞ ð36Þ

from the left eigenvectors of the M sub-block. This means

that the excited states hWðlÞn j of Eq. 26 are proper

eigenstates of Ĥ: In particular, they are orthogonal to the

exact CC ground state,

WðlÞn jWcc
0

D E
¼ 0 ð37Þ

which follows from UI jWcc
0

� �
¼ 0:

In general, that is, if not forbidden by symmetry, the

right extended eigenvectors acquire non-vanishing zeroth

components xn = Xn0

0
, and the extended eigenvectors take

on the form

X
0

n ¼
xn

Xn

� �
ð38Þ

where Xn is the (nth) eigenvector of the M sub-block, and

the zeroth component xn is given by

xn ¼ x�1
n vtXn ð39Þ

Since MXn ¼ xnXn; the following relations hold:

xn ¼ vtM�1Xn ¼ �Y
y
0Xn ð40Þ

Here Eq. 34 has been used to arrive at the last

expression.

As a consequence, the right expansion of an excited

eigenstate takes on the form

jWðrÞn i ¼ xnjWcc
0 i þ jWcc

n i ð41Þ

where Wcc
n

�� �
is given by Eq. 25. Let us note that

hU0jWcc
n i ¼ 0; since hU0jW0

I i ¼ 0; so that the relation

xn ¼ hU0jWðrÞn i ð42Þ

can be established. The excited eigenstates jWðrÞn i are

manifestly orthogonal to the dual ground state:

hW0jWðrÞn i ¼ xn þ Yy0Xn ¼ 0 ð43Þ

where the relations hUI jWðrÞn i ¼ XIn and Eq. 40 have been

used.

For spectral intensities, the squared moduli |Tn|2 of the

transition moments (8) are required, involving normalized

ground and excited states. In the bCC representation a

properly normalized expression for |Tn|2 is obtained

according to [14, 19]

jTnj2 ¼ hW0jD̂jWðrÞn ihWðlÞn jD̂ Wcc
0

�� �
ð44Þ

using both the left and right transition moments,

T ðlÞn ¼ hWðlÞn jD̂jWcc
0 i ð45Þ

T ðrÞn ¼ hW0jD̂jWðrÞn i ð46Þ

Individually, the left and right transition moments have no

significance because the respective ground and excited states

are not normalized. However, the biorthonormality relations

W0jWcc
0

� �
¼ hWðlÞn jWðrÞn i ¼ 1 ensure the combined normali-

zation in the product (44). In contrast to the left transition

moments, the ordinary bCC form (46) for the right transition

moments is not separable, so that the results obtained at

truncated bCC levels are not size intensive [19]. Within the

CCLR framework, this shortcoming is avoided, as here a

separable, if a more elaborate expression, is employed for the

right transition moments [7, 19]. The different treatment of

the spectral intensities is a distinguishing feature of the

otherwise equivalent CCLR and EOM–CC methods. In

Sect. 4.4 and Appendix 3, the CCLR expression for the right

transition moments will briefly be reviewed.

As will be discussed, the problem in the right transition

moments does not result from the right eigenstates, but

rather from the use of the dual ground state W0

� ��: As can be

concluded from Eqs. 30, 34 and 35, the dual ground state is

a CI-type expansion of the form

W0

� �� ¼ U0h j þ
X

K [ 0

~zK UKh j ð47Þ

where the expansion coefficients depend (via Eqs. 34, 35)

on the t-amplitudes of the CC ground state. For the CC

ground-state energy, the following relation holds:
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Ecc
0 ¼ W0

� ��Ĥ Wcc
0

�� �
ð48Þ

It should be noted that this expression applies not only to

the exact CC ground state (where E0
cc = E0), but also to CC

approximations based on truncations of the expansion

manifolds, such as in CCSD. This can be seen by writing

the RHS of Eq. 48 more explicitly as

W0

� ��Ĥ Wcc
0

�� �
¼ U0h jĤ Wcc

0

�� �
þ
X

I

Y�I0 UI

� ��Ĥ Wcc
0

�� �
ð49Þ

The first term on the RHS is the CC energy equation,

while the second (summation) term vanishes in compli-

ance with the CC amplitude equations, UI

� ��Ĥ Wcc
0

�� �
¼

UIh je�T̂ ĤeT̂ U0j i ¼ 0:

What is the relation of the dual ground state to the CI

ground state in the case of truncated expansions? Obvi-

ously, the energy expectation value of the dual ground state

will always be greater than (or equal to) the corresponding

CI energy,

W0

� ��Ĥ W0

�� �

W0jW0

� � �ECI
0 ð50Þ

because the dual state expansion coefficients are non-var-

iational. This can be well demonstrated in the exactly

solvable model of 2 (or more) non-interacting 2E–2O

systems (He atoms, or H2 molecules).

It should be noted that the right and left eigenvalue

problems (22, 23) for the secular matrix M (Eq. 21) follow

from a variational principle, dhUjĤjWi ¼ 0: under the

constraint UjW
� �

¼ 1: Independent variations hdUj and

jdWi on the left and right side of the energy and overlap

matrix elements lead directly to the right and left eigen-

value equations, respectively.

4 Analysis of bCC excitation energies and intensities

4.1 Order relations and separability of the bCC secular

matrix

Figure 3 shows the order structure of the bCC secular

matrix M. For the partitioning according to excitation

classes, l ¼ 1; 2; . . .; the lowest (non-vanishing) PT orders

are given here in the respective Mlm sub-blocks. In the

upper right (UR) triangular part, we recover the charac-

teristic CI structure of Fig. 1. This outcome can readily be

understood by inspecting the general expression for the

secular matrix elements,

UI

� ��Ĥ W0
J

�� �
¼ UIh jĤ UJj i þ

X

½K�\½I�

X

½L�[ ½J�
z
ðIÞ
K z
ðJÞ
L UKh jĤ ULj i

ð51Þ

obtained by using the expansions (29, 30) for the CC and

biorthogonal states, respectively. For the UR matrix ele-

ments with [I] \ [J], the sums on the RHS of Eq. 51 do not

contribute, because the excitation classes of the double

summation indices K and L differ at least by a triple

excitation, [L] - [K] C 3, so that the Hamiltonian matrix

elements UKh jĤ ULj i vanish. This means that the bCC and

CI secular matrix elements are identical, MIJ = HIJ, for

[I] \ [J]. For the diagonal blocks Mll, of course, the

lowest non-vanishing PT order is zero because the pertur-

bation expansions of the diagonal matrix elements MII

begin with zeroth-order (HF) excitation energies.

By contrast, the lower left (LL) triangular part, [I] C [J],

gives rise to the remarkable ‘‘canonical’’ order relations,

reading

MIJ �Oð½I� � ½J�Þ; ½I� � ½J� ð52Þ

This means that the lowest non-vanishing contribution in the

PT expansion of the matrix element MIJ, [I] C [J] is of the

order [I] - [J]. Likewise, we will use the notation O[MIJ]

= [I] - [J]. These order relations were first specified by

Christiansen et al. [31], quite explicitly, for the lowest five

excitation classes (singles through pentuples) and later by

Hald et al. [21] for general levels of excitation. A first gen-

eral proof of the bCC order relations was given in Ref. [18]. A

brief recapitulation of this proof is given in Appendix 1.

It should be noted that these canonical order relations are

highly non-trivial, indeed. Let us consider, for example, the

M31 matrix elements, being of the order 2. This means that

the apparent first-order contribution arising from the lead-

ing (CI) term on the RHS of Eq. 51 is exactly cancelled by

other first-order contributions from the summation part.

The bCC order structure gives rise to specific truncation

errors of the excitation energies, which can be analyzed by
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Fig. 3 a Order relations of the bCC secular matrix M. As in Fig. 1,

the block structure reflects the partitioning of M with respect to

excitation classes l ¼ 1; 2; . . .; The entries denote the (lowest) PT

order of the matrix elements in the respective sub-block; vanishing

blocks are indicated by dashes. b Order relations of bCC eigenvec-

tors: Xph and Yph denote right and left eigenvectors for singly excited

states; Y0 is the ‘‘dual’’ CC ground state
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inspecting formal PT interaction paths on the sub-blocks of

the bCC secular matrix. As an example, let us consider the

following path:

M11ð0Þ ! M13ð1Þ ! M33ð0Þ ! M31ð2Þ ! M11ð0Þ

This path allows one to specify formally a PT contribution

in the excitation energy of a single excitation (class 1)

arising from the admixture of triple excitations (class 3).

The PT order of this path is 3, and there is no lower-order

path involving class 3. This means that the PT contribu-

tions to single excitation energies arising from triple

excitations are of the order 3. Stated differently, the trun-

cation error for single excitation energies due to the neglect

of triple excitations in the explicit bCC expansion manifold

is of third order, as compared to a second-order truncation

error in the CI treatment.

A more general and stringent derivation of the bCC

truncation errors is to be based on the order relations of the

bCC eigenvector matrices, as discussed in Appedix 2. In

short, the order relations in the bCC secular matrix induce

corresponding order relations for the left and right eigen-

vector matrices Y and X, respectively. As shown in Fig. 10,

the bCC eigenvector matrices combine canonical and CI-

type behavior: the LL part of X and the UR part of Y

exhibit canonical order relations, whereas CI-type order

relations (Fig. 9) apply to the UR part of X and the LL part

of Y. The eigenvector order relations, in turn, allow one to

analyze the truncation errors in the excitation energies,

transition moments and excited-state properties. For the

singly excited states, the TEO in the bCC excitation

energies are given by the following formula (deriving from

Eq. 185)

OTEðlÞ ¼
3
2
l; l even

3
2
lþ 1

2
; l odd

�
ð53Þ

Here l denotes the highest excitation class in the expan-

sion manifold. In Table 1, the TEOs in the excitation

energies of singly excited states are listed for the first six

truncation levels.

To discuss the separability properties of the bCC

schemes [8, 19, 28] (see also Refs. [22, 23]) we revisit the

separate fragment model, S : A ? B, considered in

Sect. 2. Like the Hamiltonian, Ĥ ¼ ĤA þ ĤB; also the CC

operator can be written as the sum of the fragment opera-

tors, T̂ ¼ T̂A þ T̂B: As a consequence, both the CC states

W0
I

�� �
and the biorthogonal states UI

� �� used in the right and

left expansion manifolds, respectively, can be written as

products of fragment A and B states:

W0
IA

��
E
¼ WA

IA

��
E

WB
0

�� �
; W0

IAIB

��
E
¼ WA

IA

��
E

WB
IB

��
E

UIA

� �� ¼hUA

IA
jhUB

0 j; UIAIB

� �� ¼ hUA

IA
jhUB

IB
j

ð54Þ

Here, the notation of the fragment states has been some-

what simplified by omitting the superscripts 0 and cc: for

example, WA
IA

��
E
� WA;0

IA

��
E

and WB
0

�� �
� jWB;cc

0 i: Figure 4

shows the partitioning of the bCC secular matrix with

respect to the three different types of configurations, that is,

local excitations on fragment A, local excitations on frag-

ment B and non-local (or mixed) excitations. Let us note

once again that in the latter set we can disregard any

charge-transfer type of configurations.

The separability properties of the bCC secular matrix, as

shown in Fig. 4, can be readily derived by using the fac-

torization (Eq. 54) of the bCC basis functions. As an

explicit example, let us derive that the block MAB,A

vanishes:

MIAIB;JA
¼ hUIAIB

jĤA þ ĤBjW0
JA
i

¼ hUA

IA
jĤAjWA

JA
ihUB

IB
jWB

0 i þ hU
A

IA
jWA

JA
ihUB

IB
jĤBjWB

0 i ¼ 0

ð55Þ

Here, the first term on the RHS vanishes because of the

orthogonality relation hUB

IB
jWB

0 i ¼ 0: The second term

vanishes,

hUB

IB
jĤBjWB

0 i ¼ EB
0 hU

B

IB
jWB

0 i ¼ 0 ð56Þ

because jWB
0 i is an eigenfunction of ĤB; and hUB

IB
j and jWB

0 i
are orthogonal. In fact, this result is not predicated on the

exact fragment B ground state, but applies also to any

(systematic) CC approximation, since hUB

IB
jĤBjWB

0 i ¼ 0 is

satisfied as CC amplitudes equation for fragment B.

In a similar way, one may establish that the bCC secular

matrix for fragment A is identical to the (A, A)-block of the

composite system secular matrix,

MAA ¼ MA ð57Þ

AAM

BBM B,ABM

AB,ABM

A,ABM

BA A

(A) (A)

AB

A

B

A

(a) (b)
A

A

Y

YX

X YAB

AB

Fig. 4 a Block structure of the bCC secular matrix M corresponding

to the partitioning associated with the separate fragment model (see

text). b Structure of right and left bCC eigenvectors for a local

excitation (on fragment A)
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In deriving this result, one utilizes the CC equation for the

ground state of fragment B, hUB
0 jĤB � EB

0 jWB
0 i ¼ 0: The

matrix elements in the non-vanishing (A, AB) coupling

block read

MIA;JAJB
¼ dIAJA

vB
JB

ð58Þ

where vB
JB
¼ hUB

0 jĤBjWB
JB
i: Finally, the non-local diagonal

block matrix elements are given by

MIAIB;JAJB
¼ dIBJB

MA
IAJA
þ dIAJA

MB
IBJB

ð59Þ

It should be emphasized once again that these results do not

presuppose exact CC ground states, but apply as well to the

(systematic) CC approximations.

The separability structure of M reflects once more the

different quality of the left and right bCC expansion

manifolds. While the LL triangular is separable, the UR

triangular displays the non-separable CI-type structure of

Fig. 2. What are the consequences for excitation energies

and eigenvectors? Notwithstanding the apparently non-

separable block structure of M, the bCC excitation ener-

gies are obtained in a separable way [8]. It is readily seen

that the characteristic polynomial for the fragment secular

matrix MA is a factor in the full characteristic polynomial

associated with M. Accordingly, the eigenvalues (excita-

tion energies) of fragment A are a subset of the eigen-

values of the full secular matrix M. This means that the

energies of local excitations are separable quantities: the

bCC results do not depend on whether the method is

applied to the fragment or the composite system.

For the eigenvectors, one will expect different sepa-

rability properties in the left and right manifolds. In fact,

the right eigenvectors are separable, as shown in Fig. 4.

For a local excitation n, say on fragment A, the only non-

vanishing components are fragment-A components XAn;

and since MAXAn ¼ xnXAn it is readily established that

the fragment-A part of Xn is equal to the corresponding

fragment-A eigenvector, XAn ¼ XA
n : More explicitly, the

separability properties of right eigenvectors may be

written as

XIAn ¼ XA
IAn; XIBn ¼ XIABn ¼ 0 ð60Þ

assuming here a fragment-A excitation, n = nA.

For the left eigenvectors Yn the fragment-A eigenvector

is recovered by the A part of the full eigenvector, YAn ¼
YA

n : The local fragment-B components vanish, YIBn ¼ 0; but

there are non-vanishing non-local components, YIAB;n 6¼0:

These non-local components are related to the local ones

according to

Y
y
AB;n ¼ Y

y
AnMA;ABðxn �MAB;ABÞ�1 ð61Þ

This means that for a local excitation, say on A (n = nA),

the left eigenstate will take on the form

WðlÞn

D �� ¼
X

IA

Y�IAnhU
A

IA
jhUB

0 j þ
X

IAIB

Y�IAIB;n
hUA

IA
jhUB

IB
j ð62Þ

where YIAn ¼ YA
IAn: In the exact (full) bCC result, this

transforms into the product of the excited fragment-A state

and dual ground state of fragment B (see Sect. 4.5).

4.2 Transition moments: truncation errors

Now, we are in the position to examine the truncation

errors in the transition moments. Let us first consider the

left transition moments (Eq. 45),

T ðlÞn ¼ hWðlÞn jD̂jWcc
0 i ð63Þ

which may be written more explicitly as scalar products

T ðlÞn ¼ YynFðlÞ ð64Þ

of the left eigenvector Yn and a vector FðlÞ of basis set

transition moments,

F
ðlÞ
I ¼ hUI jD̂jWcc

0 i ð65Þ

associated with the biorthogonal (left) basis states. The

basis set transition moments, being part of the general bCC

representation of the one-particle operator D̂; exhibit

canonical order relations

O FðlÞl

h i
¼ l� 1 ð66Þ

as shown in Fig. 5b. A proof of these order relations is

given in Appendix 1. The scalar product (64) combines the

left eigenvector components with the left basis set

transition moments. This means that the (lowest) PT

order associated with a specific class l of eigenvector

components is given by O½YylFðlÞl � ¼ O½Yl� þ O½FðlÞl �:
Accordingly, the truncation after class l leads to an error

of the order O½Ylþ1� þ O½FðlÞlþ1�: In the case of singly
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Fig. 5 a Order relations of the bCC representation D of a one-particle

operator D̂: Block structure and entries as in Figs. 1 and 3. b Order

relations of the left and right basis set transition moments (see text)
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excited states, the CI-type order relations of the left

eigenvectors (Fig. 3b) lead to the TEO formula (53).

However, so far we have disregarded the effect of

truncations in the CC ground state. For example, there

are first-order contributions in F
ðlÞ
1 (that is the p–h-

components of FðlÞ) associated with the 2p–2h cluster

operator T̂2 in the CC expansion of jWcc
0 i: In conjunction

with Y1; being of zeroth order, this gives rise to a first-order

truncation error in the left transition moments if the

ground-state CC expansion does not comprise the 2p–2h

cluster operator. This can readily be generalized, noting

that the T̂l cluster operators are of the PT order l - 1.

This means that in the class l components of the F vector,

FðlÞl ; there are lth order contributions arising from the T

operators of class l ? 1. Depending on the respective

lowest order in the eigenvector components of class l, Yl;

this leads to an additional truncation error, the order of

which is by 1 smaller than that arising from the eigenvector

truncation. The overall truncation errors for singly excited

states are given by the following formula:

OTEðlÞ ¼
3
2
l; l even

3
2
l� 1

2
; l odd

�
ð67Þ

In a similar way, one may analyze the bCC truncation

errors for doubly and higher excited states; general TEO

formulas are given in Appendix (bCC eigenvector

matrices).

Likewise, the right transition moments (Eq. 46)

T ðrÞn ¼ hW0jD̂jWðrÞn i
¼ xnhW0jD̂jWcc

0 i þ
X

I

F
ðrÞ
I XIn ð68Þ

can be written as scalar products of the extended right

eigenvectors X0n (see Eq. 38) and a vector FðrÞ of the right

basis set transition moments,

F
ðrÞ
I ¼ hW0jD̂jW0

I i; ð69Þ

associated here with the CC states of right expansion

manifold. In Eq. 68, the ground-state contribution (I = 0)

is written separately.

Let us consider the second term on the RHS of Eq. 68,

which will be seen to determine the overall truncation

errors. Using the expansion (35) of the dual ground state,

this term can be written as
X

I

F
ðrÞ
I XIn ¼

X

I

hU0jD̂jW0
I iXIn þ Yy0DXn ð70Þ

where D is the bCC representation of D̂;

DIJ ¼ hUI jD̂jW0
Ji ð71Þ

The order relations of D are shown in Fig. 5 (see Appendix

1 for a proof). The summation in the first term on the RHS

of Eq. 70 is restricted to p–h components, [I] = 1, because

hU0jD̂jW0
I i ¼ 0 for [I] [ 1, and, thus, does not cause a

truncation error whatsoever. The second term can be

written in the more explicit form

Yy0DXn ¼
X

j;k

Y�j0Dj;kXkn

reflecting the underlying partitioning with respect to exci-

tation classes. To determine the truncation errors (at the

level l) one has to analyze the PT orders of the contribu-

tions with j = l ? 1, k B l ? 1 and k = l ? 1,

j B l ? 1. This is described in Appendix 2, where general

TEO formulas are derived. For singly excited states,

[n] = 1, the TEOs of Yy0DXn are given by Eq. 67.

The first term on the RHS of Eq. 68, being the product

of the ground-state admixture coefficient xn ¼ �Yy0Xn; and

the ground-state expectation value hW0jD̂jWcc
0 i; remains to

be inspected. The truncation errors in the xn coefficient

have been specified in Eq. 190 of Appendix 2 (bCC

eigenvector matrices), which become

OTEðlÞ ¼
3
2
lþ 1; l even

3
2
lþ 1

2
; l odd

�
ð72Þ

in the case of singly excited states, [n] = 1. To determine

the truncation errors in the factor hW0jD̂jWcc
0 i; we expand

the dual ground state according to Eq. 35, which yields

hW0jD̂jWcc
0 i ¼ hU0jD̂jWcc

0 i þ Yy0FðlÞ ð73Þ

Here, the first term is of zeroth order and does not induce a

truncation error. The second term can be analyzed in a

similar way as the left TMs above. Here the TEOs are

given by

OTEðlÞ ¼
3
2
l; l even

3
2
lþ 1

2
; l odd

�
ð74Þ

Since for singly excited states ([n] = 1) xn is (at least) of the

second order, the overall truncation errors in the first term

on the RHS of Eq. 68 are given by that of xn (Eq. 72),

exceeding those of the second term (Eq. 67) by one. We

note that for singly excited states, the TEOs in the left and

right transition moments are the same (see Table 1).

4.3 Transition moments: separability

The separability of the left transition moments (Eqs. 63–

65) is easily established. According to

F
ðlÞ
IA
¼ hUA

IA
jhUB

0 jD̂A þ D̂B WA
0

�� �
WB

0

�� �
¼ hUA

IA
jD̂AjWA

0 i
¼ F

ðlÞA
IA

ð75Þ

it is seen that for local excitations IA, the basis set transition

moments for fragment A are identical to the corresponding

moments of the composite system. Moreover, the basis set

transition moments for mixed excitations vanish,
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F
ðlÞ
IAIB
¼ 0 ð76Þ

which means that the non-separable part of the left

eigenvector does not come into play at all. Accordingly,

for a local (fragment-A) excitation, n = nA, we may write

T ðlÞn ¼
X

IA

Y�IAnF
ðlÞA
IA
¼ TðlÞAn ð77Þ

where Tn
(l)A is the left transition moment for fragment A. In

deriving this result, we have assumed that the local com-

ponents for the composite system eigenvectors are identical

to the components of the corresponding fragment eigen-

vectors, YIAn ¼ YA
IAn:

Whereas the left transition moments are separable not-

withstanding the non-separable left eigenvectors, the right

transition moments (Eqs. 68, 69), involving separable

eigenvectors, prove not to be separable. The problem here

arises from the use of the dual ground state W0

� ��; more

precisely from the fact that a factorization of the dual

ground state,

W0

� �� ¼ hWA

0 jhW
B

0 j ð78Þ

is attained only in the exact (full bCC) treatment. To better

understand the problem, let us first assume factorization of

W0

� �� and inspect T
ðrÞ
n for a local excitation, n = nA:

T ðrÞn ¼ xnhW0jD̂jWcc
0 i þ

X

IA

F
ðrÞ
IA

XA
IAn ð79Þ

Here, the separability properties (60) of the right

eigenvector Xn have been used; FI
(r) denote (right) basis

set transition moments (Eq. 69). The ground-state

component xn of the right eigenvector in the first term on

the RHS is always separable, since

xn ¼ �Yy0Xn ¼ �YAy
0 XA

n ¼ xA
n ð80Þ

By contrast, the ground-state expectation value

hW0jD̂jWcc
0 i ¼ hW

A

0 jD̂AjWA
0 i þ hW

B

0 jD̂BjWB
0 i ð81Þ

is a non-local quantity, involving both fragment A and B. It

should be noted that the separation of the bCC ground-state

expectation value into the sum of fragment expectation

values not only holds for the exact (factorizing) dual

ground state, but also for truncated expansions according to

Eq. 84 (in this sense the bCC ground-state expectation

values themselves are separable quantities). Being a

product of a local and a non-local factor, however, the

first term on the RHS of Eq. 79 is not separable. This

means that the non-separable contribution xnhW
B

0 jD̂BjWB
0 i

in the first term of Eq. 79 must be cancelled by a

corresponding contribution in the second term, to be

identified in the following. For a local configuration, I = IA,

the right basis set transition moment (Eq. 69) becomes

F
ðrÞ
IA
¼ hWA

0 jD̂AjWA
IA
i þ hWA

0 jWA
IA
ihWB

0 jD̂BjWB
0 i ð82Þ

Obviously, F
ðrÞ
IA

is not separable. While the first term on the

RHS is the fragment-A transition moment, F
ðrÞA
IA
¼

hWA

0 jD̂AjWA
IA
i; the second term is a non-separable

contribution involving fragment B. In the full bCC

treatment, the two non-separable contributions in T
ðrÞ
n

cancel each other. This is readily seen by inserting Eq. 82

in Eq. 79 and using that hWA

0 jWA
IA
i ¼ Y�IA0 and

X

IA

Y�IA0XA
IAn ¼ �xA

n ð83Þ

For truncated bCC expansions, on the other hand, the non-

separable contributions will not compensate each other,

giving rise to size-consistency errors in the computational

results.

The non-separability of the right transition moments can

be further elaborated by inspecting the general form of the

dual ground state,

W0

� �� ¼ hUA
0 jhUB

0 j þ
X

JA

Y�JA0hU
A

JA
jhUB

0 j

þ
X

JB

Y�JB0hUA
0 jhU

B

JB
j þ
X

JAJB

Y�JAJB;0
hUA

JA
jhUB

JB
j ð84Þ

applying both to truncated and full expansions. Here the

local expansion coefficients are separable, that is, YJA0 ¼
YA

JA0 and YJB0 ¼ YB
JB0: This follows from Eq. 34 and the

separability properties of M and v (see below). Using the

expansion (84), the right basis set transition moments take

on the form

F
ðrÞ
IA
¼ F

ðrÞA
IA
þ Y�IA0hUB

0 jD̂BjWB
0 i þ

X

JB

Y�IAJB;0
hUB

JB
jD̂BjWB

0 i

ð85Þ

With the help of Eqs. 80 and 81, we finally arrive at the

expression

T ðrÞn ¼ T ðrÞAn þ xA
n hW

B

0 jD̂BjWB
0 i � hUB

0 jD̂BjWB
0 i

	 


þ
X

IAJB

XIAnY�IAJB;0
hUB

JB
jD̂BjWB

0 i ð86Þ

for the right transition moments. Here T
ðrÞA
n denotes the

right transition moment for fragment A. The non-

separable contributions are identified as the second and

third term on the RHS of Eq. 86. These terms cancel each

other if the non-local eigenvector components factorize,

that is,

YIAJB;0 ¼ YIA0YJB0 ð87Þ

This can be seen by recalling that
P

Y�IA0XIAn ¼ �xA
n and

hWB

0 j ¼ UB
0

� ��þ
P

Y�JB0hU
B

JB
j: It should be clear, however,

that the factorization (87) of the non-local eigenvector

components is equivalent to the factorization (78) of the
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dual ground state (84), applying only to the full bCC

expansion.

It may be of interest to see how the factorization of the

exact dual ground-state eigenvector components derives

from the explicit expression (Eq. 34),

Yy0 ¼ �vtM�1

As is readily established, the local contributions to v are

separable,

vIA
¼ hUA

0 jĤAjWA
IA
i ¼ vA

IA
ð88Þ

and the mixed components vanish,

vIAIB
¼ 0 ð89Þ

The inverse of the bCC secular matrix is given by

M�1 ¼
M�1

AA � PA;AB

� M�1
BB QA;AB

� � M�1
AB;AB

0

@

1

A ð90Þ

where

PA;AB ¼ �M�1
AAMA;ABM�1

AB;AB ð91Þ

QA;AB ¼ �M�1
BBMB;ABM�1

AB;AB ð92Þ

so that, according to Eq. 34, the non-local eigenvector

components can be written as

YAB;0 ¼ ðvt
AM�1

AAMA;AB þ vt
BM�1

BBMB;ABÞM�1
AB;AB ð93Þ

To proceed, the secular matrix blocks, MAB,AB, MA,AB, and

MB,AB, have to be further evaluated. Using a somewhat

symbolic, but largely self-explanatory, notation, these

blocks may be written as

MAB;AB ¼ 1B �MAA þ 1A �MBB ð94Þ

MA;AB ¼ 1A � vt
B; MB;AB ¼ 1B � vt

A ð95Þ

Proceeding at this symbolic level, the desired result is

readily obtained as follows:

YAB;0 ¼ vt
A � vt

BðM�1
AA þM�1

BBÞM�1
AB;AB

¼ vt
A � vt

BM�1
AAM�1

BBð1B �MAA þ 1A �MBBÞM�1
AB;AB

¼ vt
AM�1

AA � vt
BM�1

BB

¼ YA0 � YB0 ð96Þ

In a more stringent manner, the preceding computation can

be performed on the matrix-element level, that is, by

explicitly expanding all matrix multiplications. Here, the

symbolic treatment according to Eqs. 93–96 may serve as a

guidance.

Let us recall once again that a factorization of the dual

ground state cannot be expected if the configuration space

is truncated. For example, assume a configuration space

extending through double excitations and let IA and JB

denote double excitations on fragment A and B, respec-

tively. Then the factorization according to Eq. 87 would

require that the configuration space of the system as a

whole comprises quadruple excitations of the type IAJB,

which, however, are not available in the truncated config-

uration manifold.

4.4 CCLR form of right transition moments

The derivation of the excited-state CC equations in the

framework of the linear response theory leads to the fol-

lowing separable, if more involved, expression for the right

transition moment [7]:

T ðrÞn ¼ hW0j½D̂; Ĉn�jWcc
0 i �

X

I;J

hW0j½½Ĥ; ĈI �; Ĉn�jWcc
0 i

� ðM þ xnÞ�1
IJ hUJ jD̂jWcc

0 i ð97Þ

Here,

Ĉn ¼
X

XKnĈK ð98Þ

denotes an excitation operator associated with the the nth

(right) excited state: jWðrÞn i ¼ xnjWcc
0 i þ ĈnjWcc

0 i: Since the

CCLR derivation starts out from a separable expression for

a time-dependent ground-state expectation value, one may

expect that the separability properties will be maintained in

the further development. Nevertheless, it is reassuring to

see directly that the CCLR form of the right transition

moments is separable [19]. Moreover, one will expect that

the ordinary bCC (68) and the CCLR (97) expressions,

while being of quite different form, must somehow become

equivalent in the exact (full) bCC treatment. The absolutely

non-trivial proof of this equivalence has been accom-

plished by Koch et al. [19]. In the following, we will

briefly review the separability of the CCLR right transition

moments. The equivalence of the two transition moment

expressions is addressed in Appendix 3.

To show the separability of the right CCLR transition

moments, we will suppose the general expansion (84) of

the dual ground state, which holds both for approximate

and exact (full) bCC treatments. Let n be a local excitation

on fragment A (n = nA). According to the separability of

the right eigenvector, Ĉn consists only of local excitation

operators, Ĉn ¼
P

XIA
ĈIA

: Now it is easy to see that the

first (commutator) term on the RHS of Eq. 97 is separable.

Since ½D̂; ĈIA
� ¼ ½D̂A; ĈIA

�; the commutator becomes a local

(fragment-A) operator, say ÔA: As a consequence, in the

matrix element hW0jÔAjWcc
0 i; the fragment B and non-local

(AB) contributions in the expansion of hW0j are projected

out, that is, hW0jÔAjWcc
0 i ¼ hW

A

0 jÔAjWA
0 i: Now, let us

consider the second term on the RHS of Eq. 97, involving a

double summation running over generic configuration

indices I,J. The double commutator, involving the
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fragment-A excitation operator Ĉn and excitation operators

ĈI ; leads to a restriction on the indices I: there are no (non-

vanishing) contributions for I = IB (fragment-B excita-

tions), since ½Ĥ; ĈIB
� ¼ ½ĤB; ĈIB

� and ½½ĤB; ĈIB
�; ĈnA

� ¼ 0:

But what about contributions associated with non-local

configurations I = IAB, not excluded by the double com-

mutator term? To proceed, let us inspect the matrix ele-

ments of (M ? xn)-1. According to the separability

structure of this matrix (see Eq. 90), the only non-vanishing

matrix elements of the type (IAB, J) are those where the J

index is non-local too, J = JAB. However, the non-local left

basis set transition moments, F
ðlÞ
J ¼ hUJ jD̂jWcc

0 i; appearing

as factors on the RHS of Eq. 97, vanish for non-local

(mixed) configurations JAB (see Eq. 76), which means that

non-local configurations can be excluded in both the J and

the I summations. To conclude, for a local excitation n

= nA, the double summation on the RHS of Eq. 97 runs

only over local fragment A configurations IA, JA. With this

restriction, it is readily established that the three ingredi-

ents on the RHS of Eq. 97, i.e., the double commutator

matrix elements, the matrix inverse and the left basis set

transition moments, are separable. They give the same

results irrespective of being computed for the entire system

or for fragment A only.

4.5 Excited-state properties and transition moments

So far, we have discussed ground-to-excited state transition

moments required to compute spectral intensities. Now, we

will turn to excited-state expectation values (properties) for

physical quantities of interest, e.g., excited-state dipole

moments, and, more generally, transition moments asso-

ciated with transitions between two excited states.

In the bCC form, the general expression

Tnm ¼ hWnjD̂jWmi ð99Þ

for excited-state transition moments becomes

Tnm ¼ hWðlÞn jD̂jWðrÞm i
¼ xmhWðlÞn jD̂jWcc

0 i þ YynDXm ð100Þ

Here, D denotes the bCC representation (71) of a given

operator D̂: The order structure of D is shown in Fig. 5,

supposing here that D is a one-particle operator; for a proof

of these order relations see Appendix 1.

The truncation errors of the Tnm matrix elements are

governed by the second term on the RHS of Eq. 100. The

secondary role of the first term can be seen in a similar way

as in the right transition moments discussed in Sect. 4.2.

We here skip the corresponding analysis of the first term,

noting only that the order relations of two constituents, that

is, the ground-state admixture coefficient xm and the left

(ground-to-excited state) transition moment Tn
(l), have

already been established in Sect. 4.2. The truncation errors

associated with the second term, being of the form of a

vector 9 matrix 9 vector product, can be derived from the

order relations of D and the respective left and right

eigenvectors, as described in more detail in Appendix 2

(bCC eigenvector matrices). In the case of singly excited

states ([n] = [m] = 1), the general formula (189) in

Appendix 2 simplifies to

OTEðlÞ ¼
3
2
l� 1; l even

3
2
l� 1

2
; l odd

�
ð101Þ

As the comparison with Eq. 53 shows, the excited-state

transition moments for singly excited states (and a one-

particle transition operator) have larger truncation errors

(i.e., lower TEOs) than the excitation energies and ground-

to-excited state transition moments.

To discuss the separability, we consider once more local

excitations on fragment A, that is, n = nA, m = mA. In the

exact case, where the left and right excited states can be

written as fragment state products,

hWðlÞn j ¼hWðlÞAn jhW
B

0 j
jWðrÞm i ¼jWðrÞAm ijWB

0 i

the excited-state transition moments take on the manifestly

separable form,

Tnm ¼ TA
nm þ dnmhW

B

0 jD̂BjWB
0 i ð102Þ

where

TA
nm ¼ hWðlÞAn jD̂AjWðrÞAm i ð103Þ

is the transition moment for fragment A. Note that for

diagonal (property) matrix elements (n = m), there is a

contribution hWB

0 jD̂BjWB
0 i; corresponding to the ground-

state expectation value of D̂ for fragment B.

Now let us analyze Eq. 100 in the case of a truncated

bCC representation. The first term on the RHS of Eq. 100

is separable,

xmT ðlÞn ¼ xA
mT ðlÞAn ð104Þ

as has already been shown in the preceding section. In the

second term,

T 0nm ¼ YynDXm ð105Þ

the separability structure of D comes into play. As in the

case of the bCC secular matrix (see Sect. 4.1), the

separability structure of D can easily be derived. The

result is shown in Fig. 6. The relevant sub-blocks DAA and

DAB,A are given by

DAA ¼ DA
AA þ 1AhUB

0 jD̂BjWB
0 i ð106Þ

DAB;A ¼ 1A � F
ðlÞ
B ð107Þ
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Here F
ðlÞ
B ¼ F

ðlÞB
B is the vector of left basis set transition

moments for fragment B, as in Eq. 75. Using these

expressions, Eq. 105 becomes

T 0nm ¼ YyAnDAAXAm þ YyAB;nDAB;AXAm ð108Þ

where

YyAB;n ¼ YyAnMA;ABðxn �MAB;ABÞ�1 ð109Þ

is the non-local part of the left eigenvector Yyn; as specified

by Eq. 61. Let us now first consider the non-diagonal case,

n = m, where the left and right eigenvectors are

orthogonal. Using the result

YyAnDAAXAm ¼ YAy
n DAXA

m ð110Þ

for the first term on the RHS of Eq. 108, as well as

Eq. 104, leads to the following expression:

Tnm ¼ TA
nm þ Y

y
AB;nDAB;AXAm ð111Þ

This means that Tnm is not separable due to the second term

on the RHS arising from the non-local left eigenvector

contributions. In the exact (full bCC) treatment, these non-

local eigenvector components factorize according to

YIAIB;n ¼ YIAnYIB0 ð112Þ

that is, they form products of excited state and ground-state

eigenvector components for fragment A and B, respec-

tively. Then the non-separable term vanishes due to the

orthogonality of the fragment eigenvectors, YAy
n XA

m ¼ 0 and

the form of DAB,A (Eq. 107).

For the diagonal case, n = m, the result is

Tnn ¼ TA
nn þ

X

IAIB

Y�IAIB
XIA
hUB

IB
jD̂BjWB

0 i ð113Þ

where again Eq. 107 has been used. Only on factorization

of the non-local eigenvector components (Eq. 112), the

correct result of Eq. 102 is obtained.

Again we may perform a brief symbolic calculation to

demonstrate the factorization (112) of the exact excited-

state eigenvector components The starting point is Eq. 61,

where we may replace MA,AB according to

MA;AB ¼ 1A � vt
B ¼ �1A � YyB0MBB ð114Þ

to give

YyAB;n ¼ �YyAn � YyB0MBBðxn �MAB;ABÞ�1 ð115Þ

Here, the general relation (35), specialized to fragment B,

YyB0 ¼ �vt
BM�1

BB ð116Þ

has been used in Eq. 114. Since YAn is an eigenvector of

MAA, it follows that

YyAnðxn �MAB;ABÞ ¼ YyAnðMAA �MAB;ABÞ ð117Þ

¼ �Y
y
An �MBB ð118Þ

and, as a consequence

Y
y
Anðxn �MAB;ABÞ�1 ¼ �Y

y
An �M�1

BB ð119Þ

Using the latter result in Eq. 115 gives

Y
y
AB;n ¼ Y

y
An � Y

y
B0 ð120Þ

The factorization of the non-local eigenvector components

is of course equivalent to the factorization hWðlÞn j ¼
hWðlÞAn jhW

B

0 j of the expansion (62).

As we have seen, the ordinary bCC expression (100) for

the excited-state transition moments and properties is non-

separable, which here is due to the non-separable compo-

nents in the left excited-state eigenvectors. Again, the

CCLR approach results in an alternative separable

expression [7], reading

Tnm ¼ hW
ðlÞ
n j½D̂; Ĉm�jWcc

0 i �
X

I;J

hWðlÞn j½½Ĥ; ĈI �; Ĉm�jWcc
0 i

� ðM þ xmnÞ�1
IJ hUJ jD̂jWcc

0 i þ dnmhW0jD̂jWcc
0 i
ð121Þ

where xmn = xm - xn. The separability of this form can

be shown in the same manner as in the case of the ground-

to-excited-state transition moments (Sect. 4.4). The

equivalence of the CCLR form (121) and the ordinary bCC

expression of the excited-state transition moments is briefly

addressed in Appendix 3.

5 Hermitian intermediate state representation

The bCC representation is a mixed or hybrid representation

made up of the CC states and the associated biorthogonal

A,ABD

AB,ABD

BBD

AAD

B,ABD

AB,BD

B

B

A

AB

AB

A

AB,AD

Fig. 6 a Block structure of the bCC representation D of a general

operator D̂ with respect to the separate fragment model (as in Figs. 2

and 4)
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states. Whereas the (correlated excited) CC states are

genuine intermediate states, being based on the correlated

ground state, the biorthogonal states are essentially of the

CI-type, that is, excited HF configurations. As was ana-

lyzed in the previous section, the use of the biorthogonal

CI-type states as the left expansion manifold downgrades

to a certain extent the truncation errors and separability

properties of the bCC computational schemes. For the

purpose of comparison, we will briefly inspect the prop-

erties of a hermitian intermediate state representation

(ISR), specifically the ADC-ISR approach [18, 24–26, 32],

in the following.

As the bCC representation, the ADC-ISR approach

starts from the correlated excited states (Eq. 15)

jW0
Ji ¼ ĈJ jW0i ð122Þ

where |W0i now refers to the normalized ground state

rather than to the CC parametrization. The correlated

excited states (CES) can then be transformed into

orthonormal intermediate states (IS),

jW0
Ji �! j ~WJi

via a (formal) Gram–Schmidt orthogonalization procedure,

in which successively higher CES classes l are

orthogonalized with respect to the already constructed

lower IS classes v ¼ 1; 2; . . .; l� 1: Within a given

excitation class, symmetric orthonormalization is

adopted. All the states are explicitly orthogonalized to

the exact ground state, forming a zeroth excitation class

(l = 0). As a result of this (so far purely formal)

procedure, one obtains an orthonormal set of intermediate

states j ~WJi;

h ~WI j ~WJi ¼ dIJ ð123Þ

being, moreover, orthogonal to the exact ground-state,

h ~WJ jW0i ¼ 0:

Representing the (shifted) Hamiltonian Ĥ � E0 in terms

of these intermediate states gives rise to a hermitian secular

matrix M,

MIJ ¼ h ~WI jĤ � E0j ~WJi ð124Þ

and the associated hermitian eigenvalue problem,

MX ¼ XX; XyX ¼ 1 ð125Þ

Here X is the diagonal matrix of excitation energies, xn

= En-E0, and X denotes the matrix of (column)

eigenvectors. The nth excited state can be expanded as

jWni ¼
X

J

XJnj ~WJi ð126Þ

in terms of the intermediate states and the eigenvector

components XJn. The transition moments take on the

form

Tn ¼ hWnjD̂jW0i ¼
X

J

FJX�Jn ð127Þ

where

FJ ¼ h ~WJ jD̂jW0i ð128Þ

are denoted as IS transition moments.

To obtain practical computational schemes, the Gram–

Schmidt procedure is used together with Rayleigh–Schrö-

dinger (RS) PT for jW0i and E0, generating explicit per-

turbation expansions for the secular matrix

M ¼ Mð0Þ þMð1Þ þMð2Þ þ � � � ð129Þ

and the IS transition moments

F ¼ Fð0Þ þ Fð1Þ þ Fð2Þ þ � � � ð130Þ

By truncating the IS manifolds and the perturbation

expansions for the secular matrix elements and IS transition

moments in a systematic and consistent manner, one arrives

at a hierarchy of ADC(n) approximations, where n indicates

that both the energies and transition moments of the lowest

excitation class (singly excited states) are treated consis-

tently through order n. An alternative and, beyond second

order, preferable derivation of the ADC-ISR perturbation

expansions is the original ADC formulation [24, 25] based

on diagrammatic PT for the polarization propagator [33].

As a distinctive feature of the ADC-ISR, the canonical

order structure [18] applies to the entire secular matrix (see

Fig. 7),

MIJ �Oðj½I� � ½J�jÞ ð131Þ

and, as a consequence, also to the eigenvector matrix X:

XIJ �Oðj½I� � ½J�jÞ ð132Þ

In analogy to the last paragraph of Appendix 2 (CI

eigenvector matrix), one readily obtains the truncation

error formula

(b)
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2

3 6

3

Xph

3 4

0 1

2 43

3
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2

Fig. 7 a Order relations of the ADC-ISR secular matrix M. Block

structure and entries as in Figs. 1 and 3. b Order relations of ADC-

ISR eigenvectors for singly excited states
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O
½n�
TEðlÞ ¼ 2O½Xlþ1;n� ¼ 2ðl� ½n� þ 1Þ; l� ½n� ð133Þ

for the excitation energies. Here, [n] denotes the class of

the excited state n (as established by the PT parentage),

and l specifies the truncation level of the ISR expansion

manifold. In a similar way, the canonical order relations

FJ �Oð½J� � 1Þ ð134Þ

for the IS transition moments lead (via Eq. 127) to the

following expression for the truncation error in the

transition moments:

O
½n�
TEðlÞ ¼ O½Flþ1� þ O½Xlþ1;n� ¼ 2l� ½n� þ 1; l� ½n�

ð135Þ

For the lowest excitation class of the singly excited states

([n] = 1), the truncation error is 2l, both for the excitation

energies and the transition moments. In Table 1, the errors

for the six lowest truncation levels are compared to the

corresponding CI and bCC values.

The treatment of excited-state properties and transition

moments,

Tnm ¼ hWnjD̂jWmi ¼ XynDXm ð136Þ

is based on the ISR of a general one-particle operator,

DIJ ¼ h ~WI jD̂j ~WJi ð137Þ

Like the secular matrix (Eq. 129), the IS property matrix D

is subject to a perturbation expansion,

D ¼ Dð0Þ þ Dð1Þ þ Dð2Þ þ � � � ð138Þ

Here the ‘‘shifted canonical’’ order relations

DIJ �Oðj½I� � ½J�j � 1Þ; j½I� � ½J�j � 1 ð139Þ

apply, reflecting that a one-particle operator can couple HF

(zeroth order) excitations of successive excitation classes.

The product Zn ¼ DXn modifies the canonical order

relations of an ADC-ISR eigenvector accordingly, that is,

ZIn�Oð½I� � ½n� � 1Þ; ½I� � ½n� � 1 ð140Þ

This leads readily to the expression

O
½n�
TEðlÞ ¼ O½Xlþ1;n� þ O½Zlþ1;n� ¼ 2ðl� ½n�Þ þ 1;

l� ½n�
ð141Þ

for the truncation error of excited-state property matrix

elements Tnn.

The ADC-ISR secular matrix is fully separable [18, 34]:

it has a diagonal partitioning structure as shown in Fig. 8,

and the diagonal blocks are identical with the corre-

sponding fragment secular matrices, that is, MAA = M(A).

For a local excitation, say on fragment A, the fragment and

entire system treatments give the same excitation energy,

and the fragment eigenvector is part of the entire system

eigenvector, in which all non-local components vanish

(XIB;n
¼ XIAB;n

¼ 0). The IS transition moments are separa-

ble as well, FIA
¼ F

ðAÞ
IA
: Together with the separable

eigenvectors this ensures size-consistent results for the

ADC-ISR transition moments. The case of the excited-state

properties and transition moments has been discussed in

Ref. [32].

6 Concluding remarks

The basic concept underlying the CCLR and EOM-CC

methods for electronic excitation in atoms and molecules

consists in a specific biorthogonal representation of the

(shifted) Hamiltonian in terms of two distinct sets of states:

on the one hand, the set of excited CC states based on the

CC ground state, and, on the other hand, the set of their

biorthogonal counterparts. This results in a non-hermitian

(bCC) secular matrix. The excitation energies are obtained

as the eigenvalues of the bCC secular matrix, while both

the left and right eigenvectors enter the calculation of the

spectral intensities. The two sets of states are of quite

different quality. While the latter (biorthogonal) basis

states are essentially of the CI-type, that is, excited HF

configurations, the excited CC states, by contrast, are

formed by applying physical excitation operators to the

correlated N-electron ground state. The resulting correlated

excited (CE) states are expected to be superior to the

simple CI states, as they already account for a major part of

electron correlation. The intuitive idea here is that electron

correlation in excited states should not be completely dif-

ferent from that in the ground state. In fact, the use of CE

intermediate states warrants distinctive advantages over the

simple CI treatment. Foremost, this concerns the truncation

error associated with limited expansion manifolds. To

A

(A)

AX

X

MAA

MBB

MAB,AB

BA

B

A

AB

AB

(b)(a)

Fig. 8 a Block structure of the ADC-ISR secular matrix M with

respect the separate fragment model. b Structure of ADC-ISR

eigenvectors for a local excitation (on fragment A)
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attain comparable accuracy, the manifold of CE states can

be truncated at distinctly smaller excitation levels than the

CI expansions. Moreover, the excited CC states are

intrinsically separable with regard to (hypothetical) non-

interacting fragments, which, in contrast to CI, allows

devising size-consistent approximation schemes based on

truncated expansion manifolds.

However, due to the equitable use of the biorthogonal

set of states being essentially of the CI-type, the bCC

representation must be viewed as a CI-ISR hybrid rather

than a full ISR approach. This becomes strikingly manifest

in the split order structure of the bCC secular matrix,

being canonical and of CI-type in the LL and UR parts,

respectively. As a result, the truncation error and separa-

bility properties are clearly superior to those of CI, but also

weaker than those of a full ISR method, such as the ADC-

ISR presented in Sect. 5. This is reflected in the general

TEO formulas derived here for excitation energies, tran-

sition moments and property matrix elements. In the case

of single excitations at truncation level 2 (that is,

neglecting triply and higher excited configurations), the

TEOs in the excitation energies and transition moments are

2, 3 and 4 for CI, bCC and ADC, respectively. At higher

truncation levels, the gap between CI and bCC, as well as

that between bCC and ADC widens. At the (already

somewhat academic) truncation level 6, the respective

TEOs are 6, 9 and 12. Of course, a given approximation

may not exhaust the margin afforded by the respective

TEO. For example, the error in the transition moments of

the CC2 scheme is of PT order 2 (due to the first-order

approximation used for the T2 amplitudes), while the

truncation error is of PT order 3. The ADC(2) approxi-

mation allows for a consistent treatment of (single exci-

tation) energies and transition moments through second

order, the TEO being 4. Let us note that the PT order of the

overall error is only an indicator for the quality of an

approximation scheme. A large error order does not by

itself guarantee accurate results, but rather must be seen as

a necessary condition for accuracy: a certain accuracy

level can only be attained in compliance with a corre-

sponding PT order of the characteristic error.

The hybrid character of the bCC representation is also

reflected in the separability properties. The excitation

energies, given as the roots of the characteristic polyno-

mial, are separable, which, in principle, ensures size-con-

sistent results at approximative levels beneath the full bCC

treatment. It should be noted, however, that the separability

of the eigenvalues applies strictly speaking only to the

(fictitious) separated fragment model. Allowing for a small

interaction between the fragments A and B, which is a more

realistic simulation of an extended system, the separability

becomes blurred because the coupling block MAB,A (see

Fig. 4) no longer vanishes, and local and non-local

excitations may mix. What is problematic here is that the

small matrix elements of MAB,A, associated with the weak

physical coupling of the fragments, form products, e.g., in

the characteristical polynomial, with the large (non-local

coupling) matrix elements of MA,AB. The mixing can

become substantial when local and non-local excitations

are nearly degenerate. This problem has been addressed by

Helgaker et al. (see p. 684), but a thorough dedicated study

seems to be still pending.

The bCC eigenvectors do not perform uniformly, as

the left and right eigenvectors are non-seperable and se-

perable, respectively. In the associated left and (ordinary)

right transition moments, both of which are needed for

the computation of spectral intensities, the separability

properties are reversed: separable left TMs, as opposed to

non-separable right TMs. This reversal is due to the use

of the dual ground state and the CC ground state in the

right and left TMs, respectively. As a result, the spectral

intensities based on the ordinary bCC TMs are not size

consistent. This problem does not arise within the CCLR

framework, as a separable, though more involved,

expression for the right TM is used. In the full bCC limit,

the CCLR expression and the ordinary one, used in the

EOM-CC methods, are equivalent. At approximate levels,

however, the consistency of the left (ordinary) and right

(CCLR) TMs may become an issue. At the simple CCS

(singles) level, for example, both the left and ordinary

right TMs are consistent through zeroth order (due to the

use of the HF ground state). The right TM in the CCLR

formulation, however, is consistent through first order.

This means that the CCLR spectral intensity expression

combines a zeroth-order left TM and a first-order right

TM. One might be inclined to see this as an improve-

ment, but it should be noted that a result comprising

incomplete first-order terms may be inferior to that of a

consistent zeroth-order approximation. The consistency

problem emerges also in the finding that for transitions

with low spectral strengths, the signs of the left and right

CCLR transition moments may differ, leading to

unphysical (i.e., negative) intensities. This is to say that

the CCLR results are not necessarily more accurate than

those of EOM-CC as long as size consistency does not

play a role. A conclusive comparative test of EOM-CC

and CCLR intensity results for smaller and medium-sized

molecules would be highly desirable. Such a study should

also comprise excited-state properties for which both

ordinary non-separable bCC or separable CCLR expres-

sions are available.

Of course, the most obvious drawback of the bCC meth-

ods is the non-hermiticity of the respective secular matrices

M. As already discussed, both the right and left eigenvectors

are needed when spectral intensities and property matrix

elements are to be determined, which requires an additional
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effort compared to the hermitian eigenvalue problem of a full

ISR method. In the case of degenerate eigenvalues, care has

to be taken to ensure the proper biorthogonalization of the

associated sets of left and right eigenvectors. More disturb-

ing is the possibility of complex eigenvalues. Even though

the underlying Hamiltonian is hermitian, so that the excita-

tion energies obtained as eigenvalues of M must ultimately

(in the full bCC limit) be real quantities, one may encounter

problems in actual computations. As first noticed and ana-

lyzed by Hättig [35], complex eigenvalues can occur in the

vicinity of conical intersections of two excited state energy

surfaces (or hyper-surfaces). Köhn and Tajti [36] have

developed some ideas on how to deal with that situation, but

so far there remain open questions.

The present analysis of the bCC methods for (neutral)

electron excitations in an N-electron system can readily be

extended to the case of generalized excitations, such as

(N - 1)-or (N ? 1)-electron excitations used in the treat-

ment of ionization or electron attachment processes,

respectively. Corresponding CC methods have been refer-

red to as IP-EOM-CC and EA-EOM-CC [37–40]. In the

case of (single) ionization, the neutral operators (4) have to

be replaced by the manifold

fĈJg � fck; cyackcl; k\l; . . .g ð142Þ

of physical 1h-, 2h-1p-, 3h-2p-,... operators. As in the case

of neutral excitations, the successive (N - 1)-electron

excitation classes of lh-(l - 1)p excitations are labeled by

l ¼ 1; 2; . . .; a corresponding classification, ½n� ¼ 1; 2; . . .;

applies to the cationic energy eigenstates |Wn
N-1i, indicat-

ing the respective PT parentage. In the (N - 1)-electron

case (as in the other generalized excitations), the compli-

cation arising from an admixture of the N-electron ground

state in the neutral excitations (Eqs. 38–41) does not apply,

which somewhat simplifies the ionic bCC equations. With

a few obvious adjustments, the discussion and the findings

for the neutral excitations can readily be transferred to the

case of (N - 1)-electron (and the other generalized) bCC

schemes. It should be noted that here generalized transition

moments Tn ¼ hW0jD̂jWN�1
n i come into play, defined with

respect to a suitable electron removal (or attachment)

operator of the type D̂ ¼
P

p dpcyp: This means that in the

bCC representation DIJ ¼ hUI jD̂jW0
Ji to be used in the

analogs of Eqs. 70 and 71, the states hUI j on the left side of

the matrix elements are the N-electron biorthogonal states

(Eq. 16 based on the neutral operators 4). In the discussion

of ionic state properties and transition moments according

to Sect. 4.5, again a particle-number conserving operator D̂

is to be considered. The corresponding bCC representation,

DIJ ¼ hUI jD̂jW0
Ji; is a pure (N - 1)-electron representa-

tion, where both hUI j and jW0
Ji are based on the operators

(142).

The analysis given here of the EOM-CC and CCLR

methods from the perspective of the bCC representation

has shown decisive advantages over the conventional CI

treatment, but also distinctly weaker TEO and separability

properties than those of a full ISR approach such as the

ADC-ISR. It should be noted, however, that the latter

approach is manifestly based on PT for the secular matrix

elements and effective transition coefficients, behaving

essentially like the Rayleigh–Schrödinger (RS) PT expan-

sions of the ground-state energies and CI expansion coef-

ficients. This means that the ADC methods and ground-

state PT have the same condition of applicability, namely a

sufficiently large energy gap between the occupied and

virtual HF orbital energies. When the energy gap becomes

too small, for example, at bond breaking nuclear confor-

mations, PT based methods are bound to fail. The bCC

quantities (secular matrix elements and basis set transition

moments), on the other hand, are based on the T-ampli-

tudes of the CC ground state, which can be determined in a

completely non-perturbative way. Yet, this edge over

methods involving PT must be relativized, as the CC

approach breaks down as well in situations where the

ground state is no longer adequately described by a dom-

inant single reference configuration (see Bartlett and Mu-

sial [41], Sect. 6C, and references therein). The reason is

that the usual single-reference CC ansatz is ill suited to

deal with the so-called static correlation. As a remedy for

this deficiency, much effort has been devoted to developing

multi-reference (MR) CC schemes [42–48] (for a more

complete list of references and an introduction into the vast

field of MRCC methods, the reader is referred to Sect. 9 in

the recent review article by Bartlett and Musial [41]).

However, the MRCC approach to ground and excited states

is far more complex than the single reference bCC repre-

sentation considered here, and it is to be seen whether

really effective computational schemes will emerge.

Acknowledgments JS is indebted to Anthony Dutoi for illuminative

discussions on various aspects of the ground-state coupled-cluster

method.

Appendix 1: Order relations of bCC representations

A general proof of the canonical order relations in the

lower left (LL) triangle of the bCC secular matrix can be

found in Ref. [18]. A brief review of the derivation of these

order relations is given in the following.

Let us first consider the simpler case of a one-particle

operator D̂; reading in second-quantized notation

D̂ ¼
X

dpqcypcq ð143Þ

where dpq ¼ h/pjd̂j/qi denote the one-particle matrix

elements associated with D̂: The bCC representation of D̂;
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DIJ ¼ hUI jD̂jW0
Ji

¼ hUI je�T̂ D̂eT̂ jUJi
ð144Þ

was encountered in the treatment of transition moments

and excited-state properties, as discussed in Sects. 4.2 and

4.5 (see Eq. 71).

The bCC representation matrix D has an order structure

associated with the partitioning according to excitation

classes, as shown in Fig. 5. In the upper right (UR) triangle

one finds the familiar CI structure for a one-particle oper-

ator. This result follows along the lines of the first para-

graph in Sect. 4.1. In the lower left (LL) triangle, the

canonical order relations

DIJ ¼ Oð½I� � ½J� � 1Þ; ½I�[ ½J� ð145Þ

apply, which is to be shown in the following.

The operator in the bCC matrix element (144) has a

finite Baker–Hausdorff (BH) expansion,

e�T̂ D̂eT̂ ¼ D̂þ ½D̂; T̂ � þ 1

2
½½D̂; T̂ �; T̂� ð146Þ

terminating here already after the double commutator term,

because

T̂ ¼
X

tIĈI ð147Þ

consists of physical excitation operators only, and D̂ has at

most two unphysical operators. Let us now write the T̂

operator according to

T̂ ¼
X

T̂l ð148Þ

in terms of individual class operators T̂l; l ¼ 1; 2; . . .: The

T-amplitudes, being themselves subject of a well-defined

(diagrammatic) PT, exhibit the order relations (see

Hubbard [49])

T̂l�Oðl� 1Þ; l [ 1 ð149Þ

This means, for example, that the PT expansions of the T2

amplitudes

T̂2 ¼
X

tabijĈabij ð150Þ

begin in first order. The T1 amplitudes (l = 1), being of

second order, are an exception reflecting Brioullin’s

theorem.

What are the consequences of the expansion (146) and

the order relations (149)? Since the BH expansion (146)

begins with D̂; there will be non-vanishing zeroth-order

contributions to DIJ for [I] = [J] and [I] = [J] ? 1. Now

suppose that I and J differ by more than one class, that is,

[I] C [J] ? 2. In that case non-vanishing contributions in

DIJ will arise only if there are terms in the BH expansion

that are at least of rank r = [I] - [J]. Here, the rank of an

operator is the number of its cy (or c) factors. For example,

D̂ is of rank 1 and the T̂l operators are of rank l. Now it is

readily established that the commutators ½D̂; T̂l� and

½½D̂; T̂l�; T̂m� are of rank l and l ? m - 1, respectively (a

commutator of two operators Â and B̂ with definite ranks, a

and b, respectively, is of rank a ? b-1). To determine the

lowest (non-vanishing) PT contribution to the DIJ matrix

elements, one has to inspect the terms of the BH expansion

(146) having rank r = [I] - [J] (which is the lowest rank

allowing for non-vanishing matrix elements) and find the

lowest PT order of those terms. For example, ½D̂; T̂2� is of

rank 2 and PT order 1, which means that for [I] = [J] ? 2

the PT order of DIJ is 1. In the general case, [I] = [J] ? l,

l C 3, terms with the required rank r = l and lowest PT

order are due to the ½D̂; T̂l� commutators, being of rank l
and PT order l - 1. Likewise, also the double commutator

½½D̂; T̂2�; T̂l�1� gives rise to terms with rank l and

order l - 1, but there are no rank l terms with PT order

lower than l - 1. This proves the order relations (145).

Let us note that the order relations hUI jD̂jWcc
0 i�Oð½I� �

1Þ for the left basis state transition moments (Eq. 65) fol-

low as special case ([J] = 0).

In a similar way, the canonical order relations

MIJ ¼ Oð½I� � ½J�Þ; ½I� � ½J� ð151Þ

for the bCC secular matrix (LL triangle) elements

MIJ ¼ hUI jĤ � E0jW0
Ji

¼ hUI je�T̂ ½Ĥ; ĈJ �eT̂ jU0i
ð152Þ

can be established. Now, we have to consider the BH

expansion involving the commutator K̂J ¼ ½Ĥ; ĈJ � and

check the emerging transition matrix elements of the type

hUI jÔjU0i: In contrast to the case of the transition operator

considered above, K̂J is itself of PT order 1 and of rank

[J] ? 1 (regarding here only the relevant two-particle part

of the Hamiltonian). The BH expansion

e�T̂ K̂JeT̂ ¼ K̂J þ ½K̂J ; T̂ � þ
1

2
½½K̂J ; T̂�; T̂ � þ

1

6
½½½K̂J ; T̂ �; T̂ �; T̂�

ð153Þ

terminates after the triple commutator, since KJ has not

more than three unphysical cy (c) operators. Let us consider

a secular matrix element MIJ, where [I] = [J] ? l, l C 1.

Obviously, the terms of the BH expansion (153) do not

contribute to MIJ if their rank is smaller than [I]. As above,

we may analyze the terms of rank r = [J] ? l with respect

to their PT order. For l = 1, the first term K̂J on the RHS

of Eq. 153 is of rank [J] ? 1 and order 1, thus giving rise

to a first-order contribution to MIJ. For higher values of l,

it suffices to consider the commutators ½K̂J ; T̂l�; being of

the required rank r = [J] ? l and PT order l. Again, it is

readily established that there are no rank r = [J] ? l terms

of lower PT order.
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Appendix 2: Order relations of CI and bCC eigenvector

matrices

The order structure of the CI and bCC secular matrices give

rise to specific order relations for the eigenvector matrices,

which, in turn, imply the respective truncation errors in the

excitation energies and transition moments. In the follow-

ing, we will first consider the CI eigenvector matrix, and

then turn to the left and right eigenvector matrices asso-

ciated with the bCC representation. Finally, we shall show

how order relations established only for a triangular part of

a matrix can be extended to the entire matrix as a conse-

quence of unitarity.

CI eigenvector matrix

The order relations of the CI eigenvector matrix rely on PT

for the exact states. Let us first consider the familiar case of

the ground state, where the well-known Rayleigh–Schrö-

dinger PT can be cast in the compact form

jW0i ¼ jU0i þ
X1

m¼1

Q̂0

E
ð0Þ
0 � Ĥ0

ĤI � E0 þ E
ð0Þ
0

	 
" #m

jU0i

ð154Þ

Here, the usual Møller–Plesset decomposition of the

Hamiltonian

Ĥ ¼ Ĥ0 þ ĤI ð155Þ

into an unperturbed (HF) part Ĥ0 and an interaction part ĤI

is supposed; jU0i is the (HF) ground state of Ĥ0 with the

energy E
ð0Þ
0 ; and Q̂0 ¼ 1̂� jU0ihU0j: To determine the

lowest (nonvanishing) PT order for a specific eigenvalue

component,

XJ0 ¼ hUJ jW0i ð156Þ

one has to analyze the contributions arising from the

expansion on the RHS of Eq. 154. In the mth order, the

leading operator term is Ĥm
I : Due to the two-electron

(Coulomb repulsion) part of ĤI ; the matrix element

hUJ jĤm
I jU0i vanishes if the excitation class of J exceeds

the value 2m. For the excitation classes [J] = 2m and [J] =

2m - 1, on the other hand, the matrix element gives rise

to a non-vanishing mth order contribution. Obviously,

there is no lower-order coupling between the HF ground

state and excitations of class 2m and 2m - 1. This means

that XJ0 is of PT order m for [J] = 2m and [J] = 2m - 1.

This result can also be written in the form

O½Xl0� ¼
1
2
l; l even

1
2
ðlþ 1Þ; l odd; [ 1

�
ð157Þ

where l denotes collectively the configurations of class l.

The p–h excitation class (l = 1) is an exception, as here

XJ0 * O(2) due to Brioullin’s theorem. The ground-state

component X00 is of course of zeroth order. In Fig. 1, the

order structure of X0 is depicted.

Now we turn to the order relations of excited states

jWni: Rather than using individual PT expansions, the

following analysis will be based directly on the order

structure of the CI secular matrix (Fig. 1). However, a

remark concerning the significance of excited-state PT is

appropriate. As is well known, PT expansions for excited

states and excited-state energies are of little practical use

because the possibility of small or vanishing denominators

(‘‘dangerous denominators’’) in the PT expansions prevents

meaningful computational results. In a formal sense,

however, excited-state PT expansions can be generated

analogously to the ground-state case, which then can be

used to analyze, e.g., truncation errors of excited-state

energies and transition moments. Underlying such a formal

PT is the concept that each excited state is related to a

specific CI state,

jWni  jUJi;

from which it emerges when the scaled interaction, e.g., in

the form kĤI ; is gradually increased from k = 0 to 1. For

our purpose, we do not need the individual PT descent of

an exact excited state. It suffices to suppose that the exact

states can be classified according to their derivation from

the (unperturbed) CI excitation classes, p–h, 2p–2h, ..., etc.

Analogously to the notation used for the CI excitation

classes, we will denote by [n] the class of the exact state

jWni; that is, [n] = l if the excited state n derives from

the lp–lh class of CI states. The classification of both the

CI and the exact states allows one to partition the CI

eigenvector matrix X into sub-blocks Xlm, where l and m
refer to the component and state classes, respectively.

Figure 9 shows the partitioning and the associated order

structure of X. A general expression for the order structure

is as follows:

O½Xlm� ¼
1
2
jl� mj; l� m even

1
2
jl� mj þ 1

2
; l� m odd

�
ð158Þ

The order relations of the eigenvector matrix reflect the

underlying order structure of the CI secular matrix. We

begin by considering the class of singly excited states ([n]

= 1). Rather than dealing with individual eigenvectors, we

can treat the entire set of class-1 eigenvectors at the same

time. Let us therefore denote by X1 the rectangular matrix

formed by all (column) eigenvectors Xn with [n] = 1. The

eigenvalue equations for the eigenvectors of class 1 can be

written compactly as

HX1 ¼ X1X1 ð159Þ

where X1 denotes the diagonal matrix of the p–h energy

eigenvalues. Since any eigenvalue xn has an orbital energy
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(zeroth order) contribution, that is, X1�Oð0Þ; Eq. 159

leads to the following order equation

O½HX1� ¼ O½X1� ð160Þ

This equation can be used to establish successively the

individual orders of the component blocks, Xk,1. Obviously,

the starting point is given by X1,1 * 1 ? O(1), which

merely reflects the fact that the singly excited states derive

from the p–h CI configurations. To proceed, we inspect the

matrix–vector block products
P

jHk,j Xj,1 for successive

values of the (row) index k. (to visualize these products, it

is helpful to write the order structure of H (Fig. 1)

alongside the X1 column matrix and fill in the successively

determined order entries here, starting with the entry 0 in

the X1,1 sub-block). For k = 2 we may readily conclude

that

X2;1�
X

j� 1

H2;jXj;1�Oð1Þ ð161Þ

where the first-order behavior comes from the first term in

the sum, H2,1 X1,1 * H2,1 * O(1). [Note that the diagonal

eigenvector block behaves as X1,1 = 1 ? O(1)]. In a similar

way, we may establish that also the next sub-block is of

first order, X3;1�Oð1Þ: For the fourth sub-block, the

situation changes since the H4;1 matrix block vanishes so

that here and beyond the zeroth-order X1,1 block drops out.

One here obtains

X4;1�
X

j� 2

H4;jXj;1�Oð2Þ ð162Þ

where the second-order behavior of X4,1 derives from the

first two summands involving the two first-order sub-

blocks X2,1 and X3,1. In the next step, one first-order block

drops out of the matrix–vector product, but the second one,

X3,1, combined with the H5,3 block of the secular matrix,

again leads to second-order behavior of X5,1. Only for

k = 6 the order jumps to 3, since now due to the structure

of the secular matrix, the first-order blocks (and the zeroth-

order block) no longer contribute to the matrix–vector

product. Continuing in this way, the order relations of

successively higher-class sub-blocks can be obtained. The

general pattern is that for each even k, the order of the Xk,1

block increases by 1. Let us note that the procedure can

readily be cast in the formally correct form of induction.

Now, we may proceed to the next higher class of 2p–2h

states. Let X2 denote the 2p–2h eigenvector matrix with the

(sub)blocks Xk,2. In accord with the PT origin of the 2p–2h

states, here the k = 2 (diagonal) block is of zeroth order,

more specifically, X2,2 * 1 ? O(1). But the order of the

first block, X1,2 is fixed as well. As will be demonstrated

below (Order relations for biorthogonal matrices), the

orthogonality of the p–h and 2p–2h eigenvectors requires

that X1,2 is of first order. In a similar way as above, the

orders of the higher k blocks can now be derived succes-

sively from the matrix–vector products

Xk;2�
X

j� 1

Hk;jXj;2 ð163Þ

It is readily established that the X3,2 and X4,2 blocks are of

first order, followed by two blocks of second order and so

forth.

The procedure outlined here for the p–h and 2p–2h states

can easily be extended to higher excitation classes, l. The

diagonal block, Xl,l * 1 ? O(1) is always of zeroth order,

while the order relations for blocks above the diagonal, k

\ l, are determined by the orthogonality between the

eigenvectors of class l and those of the lower classes [see

below: Order relations for biorthogonal matrices]. In the

3p–3h states, for example, the orthogonality constraint with

respect to the p–h and 2p–2h states requires the X1,3 and X2,3

blocks to be of first order. The full procedure for estab-

lishing the order relations of X, ascending both to higher

excitation classes and higher blocks within a given excita-

tion class, can, of course, be reformulated in a formally

satisfactory way making use of induction.

Once the order structure of the eigenvectors has been

established, it is straightforward to analyze the truncation

errors of the excitation energies. For this purpose, one has

to express an eigenvalue according to

En ¼ XynHXn ð164Þ

as an energy expectation value, involving the full secular

matrix H and the exact eigenvector Xn: This expectation

value can be written more explicitly as

En ¼
X

j;k

XyjnHj;kXkn ð165Þ

where the Greek subscripts refer to excitation classes rather

than to individual configurations. To specify the error
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Fig. 9 Order relations of the CI eigenvector matrix X. Block

structure and entries as in Figs. 1 and 3
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arising from truncating the CI manifold after class l, one

has to inspect the PT order of the terms with j = l ? 1, k
B l ? 1 (or k = l ? 1, j B l ? 1). Due to the structure

of H, it suffices to consider the diagonal contribution

Xylþ1;nHlþ1;lþ1Xlþ1;n Since Hl?1,l?1*O(0), the latter

term is of the order

O½Xylþ1;nXlþ1;n� ¼ 2O½Xlþ1;n� ð166Þ

Using Eq. 158, this translates into the general truncation

error formula

O
½n�
TEðlÞ ¼

l� ½n� þ 2; l� ½n� even

l� ½n� þ 1; l� ½n� odd

�
ð167Þ

for the CI excitation energies of class [n], where, of

course, l C [n] is supposed. In a similar way, one may

analyze the expression (9) for the transition moments,

yielding the following truncation error formula:

O
½n�
TEðlÞ ¼

l� 1
2
½n� þ 1; ½n� even

l� 1
2
½n� þ 1

2
; ½n� odd

�
ð168Þ

Note that for the case of single excitations, [n] = 1, the

general formulas (167, 168) reduce to the simple expres-

sions (7) and (11), respectively, given in Sect. 2.

For completeness, let us note that the simple expression

O
½n�
TEðlÞ ¼ l� ½n� þ 1 ð169Þ

applies to the truncation error of property matrix elements

Tnn ¼ XynDXn ð170Þ

Here, D is the CI representation (10) of a one-particle

operator.

bCC eigenvector matrices

The order structures of the right and left bCC eigenvector

matrices X and Y, respectively, are shown in Fig. 10. Note

that X now denotes the right bCC eigenvector matrix rather

than the CI eigenvector matrix as above (CI eigenvector

matrix). The bCC eigenvector matrices display both

canonical and CI-type order structures. The LL part of X

and the UR part of Y are canonical,

O½Xlm� ¼ O½Yml� ¼ l� m; l� m ð171Þ

while the UR part of X and the LL part of Y are of CI-type,

O½Xml� ¼ O½Ylm� ¼
1
2
ðl� mÞ; l� m even; � 0

1
2
ðl� mÞ þ 1

2
; l� m odd; � 0

�

ð172Þ

The order structures of the bCC eigenvector matrices can

be deduced from the order structure of the bCC secular

matrix by an obvious generalization of the procedure used

above for the CI eigenvector matrix. Here, it is important

that at each successive step associated with an excitation

class l, both the right and left eigenvector matrices Xl and

Yl must be treated in parallel, while the biorthogonality to

the respective eigenvectors of the lower excitation classes,

1; . . .; l� 1; must successively be taken into account. A

formally correct way of translating the structure of the bCC

secular matrix into the order structures of the eigenvector

matrices can readily be spelled out.

However, one may take also an alternative route, in

which the order structures of the UR parts of both X and Y

are determined directly. The order relations of the com-

plementary LL parts are then obtained as a result of the

biorthogonality, YyX ¼ 1: Let us first consider an eigen-

vector component

XJn ¼ hUJ jWðrÞn i; ½n� � ½J� ð173Þ

from a UR block of X. Since jWðrÞn i differs from the

(normalized) exact eigenstate jWni only by a normalization

constant (Nn *1 ? O(2)), we may consider hUJ jWni rather

than XJn, that is,

XJn�hUJ jWni ð174Þ

Using the expansion (30) for hUJ j; it is apparent that for [n]

C [J] the bCC eigenvecor component is of the same order

as the corresponding CI eigenvector component:

O½hUJ jWni� ¼ O½hUJ jWni� ð175Þ

This establishes the CI-type order relations for the UR part

of X.

In analogy to Eq. 174, the left bCC eigenvector

components,

YJn ¼ hWðlÞn jW0
Ji ð176Þ

can be related to the normalized eigenstates,

YJn�hWnjW0
Ji ¼ hWnjĈJ jWcc

0 i� hWnjĈJ jW0i ð177Þ

where we have used the fact that the CC and the normalized

ground state differ by a normalization constant of the order

1 ? O(2). So it remains to show the order relations
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Fig. 10 Order relations of the right and left bCC eigenvector

matrices X and Y, respectively. Block structure and entries as in

Figs. 1 and 3
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hWnjĈJ jW0i�Oð½n� � ½J�Þ; ½n� � ½J� ð178Þ

for the ‘‘generalized transition moments’’ (GTM)

hWnjĈJ jW0i: Let us first note that these GTM order rela-

tions are non-trivial. For a triply excited state ([n] = 3) and

a p–h excitation operator ([J] = 1), for example, the

(canonical) order is 2, rather than 1, as one might expect in

view of two individual first-order contributions associated

with jWð1Þn i and jWð1Þ0 i; respectively. It is instructive to

verify that these two first-order contributions, in fact,

cancel each other.

To prove the GTM order relations we may rely on the

canonical order relations

hWnj ~WJi�Oðj½n� � ½J�jÞ ð179Þ

as established for the ISR eigenvector components (see Eq.

132) discussed in Sect. 5. Since the intermediate states

j ~WKi (including jW0i) form a complete and orthonormal set

of states, they can be used to expand the GTM hWnjĈJ jW0i
as follows:

hWnjĈJ jW0i ¼
X

K

hWnj ~WKih ~WK jĈJ jW0i

¼
X

½K� 	 ½J�
hWnj ~WKih ~WK jĈJ jW0i ð180Þ

where the second line is due to the fact that by construction

the intermediate states j ~WKi are orthogonal to all states

ĈJ jW0i with [J] \ [K], that is, h ~WK jĈJ jW0i ¼ 0 for [J] \
[K]. Now for [n] [ [J], the order of hWnj ~WKi decreases

with increasing [K] and so does the order of h ~WK jĈJ jW0i:
This means that the minimal order contributions in the sum

on the RHS of Eq. 180 are due to those where [K] = [J]:

hWnjĈJ jW0i�O½hWnj ~WJih ~WJ jĈJ jW0i� ¼ O½hWnj ~WJi�
ð181Þ

The last equality follows from the observation that

h ~WJ jĈJ jW0i is of zeroth order. This completes the proof of

the canonical order relations for the eigenvector compo-

nents in the UR blocks of Y.

The biorthogonality of the left and right bCC eigen-

vector matrices exacts the order relations of the LL blocks

of the X and Y matrices, as will be shown below (Order

relations for biorthogonal matrices).

Like in the last paragraph of the first subsection (CI

eigenvector matrix), the truncation error of the bCC exci-

tation energies for general excitation classes [n] can be

deduced from the eigenstate order relations. The starting

point is the expression

En ¼ YynMXn ¼
X

j;k

YyjnMj;kXkn ð182Þ

where, analogously to Eq. 165, the second equation reflects

the partitioning of the energy expectation value with

respect to excitation classes. To determine the TEO at a

given truncation level l, one has to analyze the

contributions where j = l ? 1, [n] B k B l ? 1 (set S1)

and k = l ? 1, [n] B j B l (set S2). Here, l C [n] is

supposed. The former set of contributions is given by

S1 ¼ Yylþ1;n

Xlþ1

k¼½n�
Mlþ1;kXkn ð183Þ

Due to the order relations in the LL parts of X (Eq. 171)

and M (Eq. 52), we find

O½Mlþ1;kXkn� ¼ l� ½n� þ 1 ð184Þ

irrespective of k. Together with the OR of Ylþ1;n (Eq. 172),

this leads to the following TEO formula

O
½n�
TEðlÞ ¼

3
2
ðl� ½n�Þ þ 2; l� ½n� even

3
2
ðl� ½n�Þ þ 3

2
; l� ½n� odd

�
ð185Þ

The S2 set consists only of two contributions,

S2 ¼ Yyl;nMl;lþ1Xlþ1;n þ Yyl�1;nMl�1;lþ1Xlþ1;n ð186Þ

because Mj,l?1 = 0 for j\l - 1. The two involved

sub-blocks of M are of first order, O½Ml;lþ1� ¼
O½Ml�1;lþ1� ¼ 1; and the TEOs of the S2 contributions

are seen to exceed those of S1. This means that Eq. 185 is

the final expression for the truncation errors in the bCC

excitation energies.

In a similar way, one can derive general TEO formulas

for the left and right transition moments and the excited-

state properties. In case of the right transition moments, the

dual ground-state eigenvector Y0 comes into play. The CI-

type order relations of Y0 (see Fig. 3b) can readily be

established by analyzing the eigenvalue equation Yy0M ¼
�vt (Eq. 34) in a similar way as in the first subsection (CI

eigenvector matrix), but assuming that only the p–h and

2p–2h components of vt are non-vanishing, the latter being

of first order. As expected, both the dual and the CI ground-

state have the same order relations, as specified by Eq. 157.

The resulting TEO formulas are as follows.

(i) left transition moments:

O
½n�
TEðlÞ ¼

3
2
l� 1

2
½n�; l� ½n� even

3
2
l� 1

2
½n� þ 1

2
; l� ½n� odd

�
ð187Þ

(ii) right transition moments:

O
½n�
TEðlÞ ¼

3
2
l� ½n� þ 1; l even

3
2
l� ½n� þ 1

2
; l odd

�
ð188Þ

(iii) property matrix elements:

O
½n�
TEðlÞ ¼

3
2
ðl� ½n�Þ þ 1; l� ½n� even

3
2
ðl� ½n�Þ þ 1

2
; l� ½n� odd

�
ð189Þ

As above, [n] and l denote the final state excitation class and

the truncation level, respectively, where of course l C [n].
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The first expression (i) is obtained by generalizing the

derivation of Eq. 67 in Sect. 4.2. Here the error associated

with the truncation of the excited state manifold follows

from Eq. 64, using the order relations (66) of the left basis

set transition moments together with the CI-type order

relations (Eq. 172) in the LL block of the left eigenvector

matrix. In addition, one has to account for the error arising

from the truncation of the ground-state CC expansion,

assuming here the same truncation levels in the ground and

excited states. Supposing a sufficiently large or even com-

plete ground-state CC expansion, the TEO increases by 1 for

even values of l - [n] (first line on the RHS of Eq. 187).

In the case of the right transition moments (ii), the TEOs

are determined by the second term on the RHS of Eq. 70.

This term can be analyzed in an analogous way as the bCC

eigenvalues by using the bCC order relations of the tran-

sition operator matrix D given in Fig. 5a, rather than those

of the bCC secular matrix. It should be noted that apart

from the case of single excitations, [n] = 1, the right

transition moments have larger truncation errors (lower

orders) than the left ones.

In (iii), finally, one has to analyze the vec-

tor 9 matrix 9 vector product in Eq. 100. The order

relations that come into play are those of D (Fig. 5a) and

the LL parts of the left and right eigenvector matrices. It

should be noted that the expression (iii) applies also to

inter-state transition moments for excited states of the same

class, [n] = [m].

In the latter two cases, there is each an additional con-

tribution, arising from the admixture of the ground state in

the right eigenstate expansion (Eq. 41), specified by the

respective (extended) eigenvector component xn ¼ �Yy0Xn

(Eq. 40). Using the order relations for Yy0 and the LL part of

the right eigenvector matrix, one can readily derive the

following TEO formula for the xn components:

O
½n�
TEðlÞ ¼

3
2
l� ½n� þ 2; l even

3
2
l� ½n� þ 3

2
; l odd

�
ð190Þ

As discussed in Sects. 4.2 and 4.5, the TEOs in the addi-

tional (ground-state admixture) terms exceed those of the

respective main contribution.

Order relations for biorthogonal matrices

In the preceding subsection (bCC eigenvector matrices),

the order relations for the bCC eigenvector matrices have

been established only for the respective UR blocks, being

of CI-type in X and canonical in Y. Now we will show that

the biorthogonality of X and Y requires canonical and CI-

type behavior in the LL blocks of X and Y, respectively.

Let us first note that the biorthogonality relation

YyX ¼ 1 ð191Þ

also implies that

XYy ¼ 1 ð192Þ

which will be our starting point here. In this form, the UR

order relations of the first factor X (CI-type) match the LL

order relations of the second factor Yy (canonical), which

for brevity will be denoted by Y0 henceforth. For a

graphical notion of the following procedure, we recom-

mend to place the X and Y0 partitioning schemes next to

each other and fill in successively the emerging order

relation entries.

For the first row of X-blocks, X1,k, k = 1,2,..., and the

first column of Y0-blocks, Yk,1

0
, k = 1,2,..., the order rela-

tions are already given. In the second row of X-blocks and

the second column of Y0-blocks, there is one undetermined

block each, namely, X2,1 and Y1,2

0
, respectively. The

orthogonality of the second X row and the first Y0 column

can be expressed as follows:
X

k

X2;kY0k;1 ¼ 0 ð193Þ

What can be concluded from this with respect to the order

of X2,1? Let us focus on the first two terms in the sum, the

remainder being (at least) of the order 2:

X2;1Y01;1 þ X2;2Y02;1 þ Oð2Þ ¼ 0 ð194Þ

Since the diagonal blocks of the eigenvector matrices

behave as Y1,1

0
= 1 ? O(1) and X2,2 = 1 ? O(1),

respectively, and Y2,1

0
* O(1), the following relation

holds through first order:

X2;1 þ Oð1Þ ¼ 0 ð195Þ

This means that X2,1 must cancel a (non-vanishing) first-

order contribution and, thus, is itself of the first order (more

accurately, the lowest non-vanishing contribution in the PT

expansion of X2,1 is of first order). In a similar way, we

may conclude Y1,2

0
* O(1), being a consequence of the

orthogonality of the second column of Y0-blocks and the

first row of X-blocks.

After having completed the order relations in the second

row and column of X and Y0, respectively, we may proceed

to the third row of X-blocks. Here, the orders of the first

two blocks, X3,1 and X3,2, have to be derived, which in turn

can be achieved by exploiting that this row is orthogonal to

both the first and second column of Y0-blocks. Expanded

explicitely through the first three terms, these order rela-

tions are:

X3;1Y01;1 þ X3;2Y02;1 þ X3;3Y03;1 þ Oð4Þ ¼ 0 ð196Þ

X3;1Y01;2 þ X3;2Y02;2 þ X3;3Y03;2 þ Oð3Þ ¼ 0 ð197Þ

The second equation allows us to determine the order of X3,2.

Using Y1,2

0
* O(1), Y3,2

0
* O(1), and Y2,2

0
= 1 ? O(1),
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X3,3 = 1 ? O(1) (as diagonal eigenvector blocks), we may

conclude that the relation

X3;2 þ Oð1Þ ¼ 0 ð198Þ

holds through first order, which, as above, implies that X3,2

is of first order. Using this result in the first orthogonality

equation, together with Y1,1

0
= 1 ? O(1), Y2,1

0
* O(1), and

Y3,1

0
* O(2), yields through second order

X3;1 þ Oð2Þ ¼ 0 ð199Þ

which means that X3,1 *O(2), consistent with the canon-

ical order relations. In a completely analogous way, the

first two blocks in the third column of Y0-blocks can be

treated, yielding the expected CI-type order results, Y01,3 *
O(1), Y02,3 *O(1).

This brief demonstration shows how the given CI-type

UR order relations of X and the canonical LL order rela-

tions of Y0 (¼ Yy) impose canonical order relations in the

LL part of X and CI-type order relations in the UR part Yy

as a result of the biorthogonality of right and left bCC

eigenvector matrices. Of course, this derivation can readily

be cast into a formally correct proof by induction (see Ref.

[18]).

In a related way, the unitarity of the CI eigenvector

matrix (denoted X in the first subsection, CI eigenvector

matrix) can be used to extend the CI order relations (157),

established in the first subsection (CI eigenvector matrix)

only for the LL part, to the entire matrix X. Writing the

unitarity relation of the CI eigenvector matrix in the form

XyX ¼ 1; the order relations of the UR part of Xy combine

with those of the LL part of X, similar to the product (192)

of the bCC eigenvector matrices. The successive con-

struction of the CI order relations in the UR part of X can

be performed essentially as in the bCC case above.

Appendix 3: Equivalence of CCLR and ordinary bCC

transition moments

Right transition moments

In the exact (full) bCC treatment, the ordinary right bCC

transition moment (Eq. 46)

T ðrÞn ¼ hW0jD̂ĈnjWcc
0 i þ xnhW0jD̂jWcc

0 i ð200Þ

and the separable CCLR expression (Eq. 97)

T ðrÞn ¼ hW0j½D̂; Ĉn�jWcc
0 i �

X

I;J

hW0j½½Ĥ; ĈI �; Ĉn�jWcc
0 i

� ðM þ xnÞ�1
IJ hUJ jD̂jWcc

0 i ð201Þ

are equivalent. Here, as in Sect. 4.4,

Ĉn ¼
X

XInĈI ð202Þ

denotes the (right) excitation operator associated with the

nth excited state, jWðrÞn i ¼ xnjWcc
0 i þ ĈnjWcc

0 i: This by no

means obvious result was shown explicitly by Koch et al.

[19]. The following is essentially a reformulation and slight

extension of the original proof, using the more transparent

wave function notations adopted here.

Let us start from the the ordinary bCC expression (200)

and transform it successively into the CCLR expression

(201). As a first step we make use of the commutator

relation D̂Ĉn ¼ ½D̂; Ĉn� þ ĈnD̂; yielding

T ðrÞn ¼ hW0j½D̂; Ĉn�jWcc
0 i þ hW0jĈnD̂jWcc

0 i þ xnhW0jD̂jWcc
0 i
ð203Þ

To proceed, let us consider the (trivial) identity

hW0jĈnD̂jWcc
0 i

¼ hW0jĈnðĤ � E0 þ xnÞðĤ � E0 þ xnÞ�1D̂jWcc
0 i
ð204Þ

and replace the inverse matrix operator on the RHS by its

bCC representation. Noting that M0 ? xn is the bCC

representation of Ĥ � E0 þ xn; where M0 is the extended

bCC secular matrix given by Eq. 27, the bCC

representation of the inverse operator reads

ðM0 þ xnÞ�1 ¼ x�1
n wt

n

0 ðM þ xnÞ�1

� �
ð205Þ

where

wt
n ¼ �x�1

n vtðM þ xnÞ�1 ð206Þ

This means that we can express ðĤ � E0 þ xnÞ�1
as

follows:

ðĤ � E0 þ xnÞ�1 ¼
X

I;J

W0
I

�� �
ðM þ xnÞ�1

IJ UJ

� ��

þ
X

J

wnJ jWcc
0 i UJ

� ��þ x�1
n Wcc

0

�� �
U0h j

Inserting this expansion into Eq. 204 yields

hW0jĈnD̂jWcc
0 i

¼ hW0jĈnðĤ � E0 þ xnÞjW0
I iðM þ xnÞ�1

IJ hUJ jD̂jWcc
0 i

� xn hU0jD̂jWcc
0 i þ

X

J

xnwnJhUJ jD̂jWcc
0 i

( )

ð207Þ

In deriving this result we have used that ðĤ � E0 þ
xnÞ Wcc

0

�� �
¼ xn Wcc

0

�� �
and hW0jĈnjWcc

0 i ¼ �xn: Note that at

this point, another xn-term comes into play, augmenting the

third term on the RHS of Eq. 203. The reformulation of

Eq. 204 is still not complete. To proceed, the matrix

elements hW0jĈnðĤ � E0 þ xnÞjW0
I i in the first term on the

RHS of Eq. 207 can be expressed according to
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hW0jĈnðĤ � E0 þ xnÞĈI jWcc
0 i

¼ �hW0j½½Ĥ; ĈI �; Ĉn�jWcc
0 i � xnxnY�I0 ð208Þ

in terms of the double commutator ½½Ĥ; ĈI �; Ĉn�: Here, we

have used the eigenvalue equation for the nth excited state

in the form

ðĤ � E0ÞĈn Wcc
0

�� �
¼ xn Ĉn Wcc

0

�� �
þ xn Wcc

0

�� �� �
ð209Þ

Moreover, recall that hW0jĈI jWcc
0 i ¼ Y�I0 and the

operators Ĉn and ĈI commute. Inserting Eq. 208 on the

RHS of Eq. 207 constitutes the final step in the

reformulation of hW0jĈnD̂jWcc
0 i: Using this result in

Eqs. 207 and 203, respectively, validates the second term

in the CCLR expression (201), but also introduces a

third xn-term,

�xnxn

X

I;J

Y�I0ðM þ xnÞ�1
IJ hUJ jD̂jWcc

0 i ð210Þ

due to the second term on the RHS of Eq. 208. It remains

to show that the three xn terms cancel each other, that is,

hW0jD̂jWcc
0 i � hU0jD̂jWcc

0 i �
X

J

xnwnJhUJ jD̂jWcc
0 i

� xn

X

I;J

Y�I0ðM þ xnÞ�1
IJ hUJ jD̂jWcc

0 i ¼ 0 ð211Þ

where the contributions 1, 2 ? 3 and 4 on the LHS arise

from Eqs. 203, 207 and 210, respectively. The

contributions 3 and 4 can be combined and further

evaluated in a compact matrix notation as follows:

xnðwt þ Yy0ÞðM þ xnÞ�1 ¼ xnð�x�1
n vtðM þ xnÞ�1

� vtM�1ðM þ xnÞ�1Þ
ð212Þ

¼ �xnvtðx�1
n þM�1ÞðM þ xnÞ�1 ð213Þ

¼ �xnvtx�1
n M�1ðM þ xnÞðM þ xnÞ�1 ð214Þ

¼ �vtM�1 ¼ Y
y
0 ð215Þ

As a result, the sum of the three xn terms becomes

xnfhW0jD̂jWcc
0 i � hU0jD̂jWcc

0 i �
X

Y�J0hUJ jD̂jWcc
0 ig ¼ 0

ð216Þ

where the cancellation now is obvious, as

hW0j ¼ hU0j þ
P

Y�J0hUJ j:

Excited-state transition moments

In a similar way, one may show the equivalence of the

ordinary bCC and the CCLR expressions for excited-state

transition moments and properties, the latter reading (Eq.

121)

Tnm ¼ hW
ðlÞ
n j½D̂; Ĉm�jWcc

0 i �
X

I;J

hWðlÞn j½½Ĥ; ĈI �; Ĉm�jWcc
0 i

� ðM þ xmnÞ�1
IJ hUJ jD̂jWcc

0 i þ dnmhW0jD̂jWcc
0 i
ð217Þ

where xmn = xm-xn. As above, we start from the ordinary

bCC expression (100)

Tnm ¼ hW
ðlÞ
n jD̂ĈmjWcc

0 i þ xmhW
ðlÞ
n jD̂jWcc

0 i ð218Þ

and use the commutator relation D̂Ĉm ¼ ½D̂; Ĉm� þ ĈmD̂

yielding

Tnm ¼ hW
ðlÞ
n j½D̂; Ĉm�jWcc

0 i þ hW
ðlÞ
n jĈmD̂jWcc

0 i
þ xmhW

ðlÞ
n jD̂jWcc

0 i ð219Þ

Analogously to Eq. 204, we consider the identity

hWðlÞn jĈmD̂jWcc
0 i

¼ hWðlÞn jĈmðĤ � E0 þ xmnÞðĤ � E0 þ xmnÞ�1D̂jWcc
0 i
ð220Þ

and use the the bCC representation of ðĤ � E0 þ xmnÞ�1
to

further evaluate the RHS. Note that the only difference to

Eqs. 205 and 206 is the replacement of xn by xmn. This

leads to

hWðlÞn jĈmD̂jWcc
0 i

¼
X

I;J

hWðlÞn jĈmðĤ�E0þxmnÞjW0
I iðMþxmnÞ�1

IJ hUJ jD̂jWcc
0 i

þdmnðhU0jD̂jWcc
0 i�

X

I;J

vIðMþxmnÞ�1
IJ hUJ jD̂jWcc

0 iÞ

ð221Þ

using here hWðlÞn jĈmjWcc
0 i¼dmn: Let us consider the second

term on the RHS, which is non-vanishing only for n = m

due to the Kronecker symbol. Since xmn = 0 for m = n, and

vtM�1 ¼ �Yy0 ð222Þ

the latter term becomes dmnhW0jD̂jWcc
0 i; thus reproducing

the third term in the CCLR expression (217). As in

Eq. 208, we now may introduce a double commutator

according to

hWðlÞn jĈmðĤ � E0 þ xmnÞĈI jWcc
0 i

¼ �hWðlÞn j½½Ĥ; ĈI �; Ĉm�jWcc
0 i � xmxmY�In ð223Þ

Here, we have used the eigenvector equation for the mth

excited state in the form

ðĤ � E0ÞĈm Wcc
0

�� �
¼ xmðĈm Wcc

0

�� �
þ xm Wcc

0

�� �
Þ ð224Þ

and the relations hWðlÞn jĈI jWcc
0 i ¼ Y�In for the left

eigenvector components. Using this result in Eq. 221 gives
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hWðlÞn jĈmD̂jWcc
0 i

¼ �
X

I;J

hWðlÞn j½½Ĥ; ĈI �; Ĉm�jWcc
0 iðM þ xmnÞ�1

IJ hUJ jD̂jWcc
0 i

� xmxm

X

I;J

Y�InðM þ xmnÞ�1
IJ hUJ jD̂jWcc

0 i

ð225Þ

The first term on the RHS is seen to reproduce, via Eq. 219,

the second term of the CCLR expression (217). It remains

to inspect the second term on the RHS, containing the

factor xm. Since Yn is a left eigenvector of M, it follows that

YynðM þ xmnÞ�1 ¼ ðxn þ xmnÞ�1Yyn ¼ x�1
m Yyn ð226Þ

Thus,

�xmxm

X

I;J

Y�InðM þ xmnÞ�1
IJ hUJ jD̂jWcc

0 i

¼ �xmhW
ðlÞ
n jD̂jWcc

0 i ð227Þ

which cancels the original xm term on the RHS of Eq. 219.

This concludes our proof.
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